:books: Add and fix scripts
Browse files
README.md
CHANGED
@@ -38,6 +38,6 @@ pip install torch-uncertainty
|
|
38 |
|
39 |
### Loading models
|
40 |
|
41 |
-
The functions to load the models are available in `scripts`.
|
42 |
|
43 |
**Any questions?** Please feel free to ask in the [GitHub Issues](https://github.com/ENSTA-U2IS-AI/torch-uncertainty/issues) or on our [Discord server](https://discord.gg/HMCawt5MJu).
|
|
|
38 |
|
39 |
### Loading models
|
40 |
|
41 |
+
The functions to load the models are available in `scripts`. The script corresponding to Tiny-ImageNet also contains a snippet to evaluate the accuracy of a downloaded model.
|
42 |
|
43 |
**Any questions?** Please feel free to ask in the [GitHub Issues](https://github.com/ENSTA-U2IS-AI/torch-uncertainty/issues) or on our [Discord server](https://discord.gg/HMCawt5MJu).
|
scripts/cifar-10-resnet18/std_loading.py
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
from pathlib import Path
|
2 |
|
3 |
-
from torch_uncertainty.models.resnet import
|
4 |
from safetensors.torch import load_file
|
5 |
|
6 |
|
7 |
def load_model(version: int):
|
8 |
"""Load the model corresponding to the given version."""
|
9 |
-
model =
|
|
|
10 |
num_classes=10,
|
11 |
in_channels=3,
|
12 |
style="cifar",
|
|
|
1 |
from pathlib import Path
|
2 |
|
3 |
+
from torch_uncertainty.models.resnet import resnet
|
4 |
from safetensors.torch import load_file
|
5 |
|
6 |
|
7 |
def load_model(version: int):
|
8 |
"""Load the model corresponding to the given version."""
|
9 |
+
model = resnet(
|
10 |
+
arch=18,
|
11 |
num_classes=10,
|
12 |
in_channels=3,
|
13 |
style="cifar",
|
scripts/cifar10-resnet20-frn-silu/std_loading.py
CHANGED
@@ -1,14 +1,15 @@
|
|
1 |
from pathlib import Path
|
2 |
from torch.nn import functional as F
|
3 |
|
4 |
-
from torch_uncertainty.models.resnet import
|
5 |
from torch_uncertainty.layers.filter_response_norm import FilterResponseNorm2d
|
6 |
from safetensors.torch import load_file
|
7 |
|
8 |
|
9 |
def load_model(version: int):
|
10 |
"""Load the model corresponding to the given version."""
|
11 |
-
model =
|
|
|
12 |
num_classes=10,
|
13 |
in_channels=3,
|
14 |
style="cifar",
|
|
|
1 |
from pathlib import Path
|
2 |
from torch.nn import functional as F
|
3 |
|
4 |
+
from torch_uncertainty.models.resnet import resnet
|
5 |
from torch_uncertainty.layers.filter_response_norm import FilterResponseNorm2d
|
6 |
from safetensors.torch import load_file
|
7 |
|
8 |
|
9 |
def load_model(version: int):
|
10 |
"""Load the model corresponding to the given version."""
|
11 |
+
model = resnet(
|
12 |
+
arch=20,
|
13 |
num_classes=10,
|
14 |
in_channels=3,
|
15 |
style="cifar",
|
scripts/tiny-imagenet-resnet18/std_loading_testing.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
|
3 |
+
from torch_uncertainty.models.resnet import resnet
|
4 |
+
from safetensors.torch import load_file
|
5 |
+
|
6 |
+
|
7 |
+
def load_model(version: int):
|
8 |
+
"""Load the model corresponding to the given version."""
|
9 |
+
model = resnet(
|
10 |
+
arch=18,
|
11 |
+
num_classes=200,
|
12 |
+
in_channels=3,
|
13 |
+
style="cifar",
|
14 |
+
conv_bias=False,
|
15 |
+
)
|
16 |
+
path = Path(
|
17 |
+
f"tiny-imagenet-resnet18/tiny-imagenet-resnet18-0-1023/version_{version}.safetensors"
|
18 |
+
)
|
19 |
+
if not path.exists():
|
20 |
+
raise ValueError("File does not exist")
|
21 |
+
|
22 |
+
state_dict = load_file(path)
|
23 |
+
model.load_state_dict(state_dict=state_dict)
|
24 |
+
return model
|
25 |
+
|
26 |
+
from torch_uncertainty.datamodules.classification.tiny_imagenet import TinyImageNetDataModule
|
27 |
+
from torchmetrics import Accuracy
|
28 |
+
|
29 |
+
# Compute the accuracy using the first checkpoint
|
30 |
+
acc = Accuracy("multiclass", num_classes=200)
|
31 |
+
data_module = TinyImageNetDataModule(
|
32 |
+
root="data",
|
33 |
+
batch_size=32,
|
34 |
+
)
|
35 |
+
model = load_model(0)
|
36 |
+
|
37 |
+
model.eval()
|
38 |
+
data_module.setup("test")
|
39 |
+
|
40 |
+
for batch in data_module.test_dataloader()[0]:
|
41 |
+
x, y = batch
|
42 |
+
y_hat = model(x)
|
43 |
+
acc.update(y_hat, y)
|
44 |
+
print(f"Accuracy on the test set: {acc.compute():.3%}")
|