Datasets:

Modalities:
Image
Text
Formats:
parquet
Languages:
Chinese
ArXiv:
DOI:
Libraries:
Datasets
Dask
License:
tianyu-z commited on
Commit
d146858
·
1 Parent(s): 1e5f783
Files changed (1) hide show
  1. README.md +11 -7
README.md CHANGED
@@ -82,9 +82,10 @@ We support open-source model_id:
82
  "THUDM/cogvlm2-llama3-chat-19B",
83
  "echo840/Monkey-Chat",]
84
  ```
85
- For the models not on list, they are not intergated with huggingface, please refer to their github repo to create the evaluation pipeline.
86
 
87
  ```bash
 
88
  # We use HuggingFaceM4/idefics2-8b and vcr_wiki_en_easy as an example
89
  # Inference from the VLMs and save the results to {model_id}_{difficulty}_{language}.json
90
  cd src/evaluation
@@ -98,19 +99,23 @@ python3 gather_results.py --jsons_path .
98
  ```
99
 
100
  ### Close-source evaluation
101
- We provide the evaluation script for the close-source model: `GPT-4o`, `GPT-4-Turbo`, `Claude-3-Opus` in the `evaluation` folder.
102
 
103
  You need an API Key, a pre-saved testing dataset and specify the path of the data saving the paper
104
  ```bash
 
105
  cd src/evaluation
106
- # save the testing dataset to the path
107
  python3 save_image_from_dataset.py --output_path .
 
 
 
108
 
109
- # Inference Put your API key and Image Path in the evaluation script (e.g. gpt-4o.py)
110
- python3 gpt-4o.py
111
 
112
  # Evaluate the results and save the evaluation metrics to {model_id}_{difficulty}_{language}_evaluation_result.json
113
- python3 evaluation_metrics.py --model_id gpt4o --output_path . --json_filename "gpt4o_en_easy.json" --dataset_handler "vcr-org/VCR-wiki-en-easy-test"
114
 
115
  # To get the mean score of all the `{model_id}_{difficulty}_{language}_evaluation_result.json` in `jsons_path` (and the std, confidence interval if `--bootstrap`) of the evaluation metrics
116
  python3 gather_results.py --jsons_path .
@@ -123,7 +128,6 @@ pip install git+https://github.com/EvolvingLMMs-Lab/lmms-eval.git
123
  # We use HuggingFaceM4/idefics2-8b and vcr_wiki_en_easy as an example
124
  python3 -m accelerate.commands.launch --num_processes=8 -m lmms_eval --model idefics2 --model_args pretrained="HuggingFaceM4/idefics2-8b" --tasks vcr_wiki_en_easy --batch_size 1 --log_samples --log_samples_suffix HuggingFaceM4_idefics2-8b_vcr_wiki_en_easy --output_path ./logs/
125
  ```
126
-
127
  `lmms-eval` supports the following VCR `--tasks` settings:
128
 
129
  * English
 
82
  "THUDM/cogvlm2-llama3-chat-19B",
83
  "echo840/Monkey-Chat",]
84
  ```
85
+ For the models not on list, they are not intergated with huggingface, please refer to their github repo to create the evaluation pipeline. Examples of the inference logic are in `src/evaluation/inference.py`
86
 
87
  ```bash
88
+ pip install -r requirements.txt
89
  # We use HuggingFaceM4/idefics2-8b and vcr_wiki_en_easy as an example
90
  # Inference from the VLMs and save the results to {model_id}_{difficulty}_{language}.json
91
  cd src/evaluation
 
99
  ```
100
 
101
  ### Close-source evaluation
102
+ We provide the evaluation script for the close-source models in `src/evaluation/closed_source_eval.py`.
103
 
104
  You need an API Key, a pre-saved testing dataset and specify the path of the data saving the paper
105
  ```bash
106
+ pip install -r requirements.txt
107
  cd src/evaluation
108
+ # [download images to inference locally option 1] save the testing dataset to the path using script from huggingface
109
  python3 save_image_from_dataset.py --output_path .
110
+ # [download images to inference locally option 2] save the testing dataset to the path using github repo
111
+ # use en-easy-test-500 as an example
112
+ git clone https://github.com/tianyu-z/VCR-wiki-en-easy-test-500.git
113
 
114
+ # specify your image path if you would like to inference using the image stored locally by --image_path "path_to_image", otherwise, the script will streaming the images from github repo
115
+ python3 closed_source_eval.py --model_id gpt4o --dataset_handler "VCR-wiki-en-easy-test-500" --api_key "Your_API_Key"
116
 
117
  # Evaluate the results and save the evaluation metrics to {model_id}_{difficulty}_{language}_evaluation_result.json
118
+ python3 evaluation_metrics.py --model_id gpt4o --output_path . --json_filename "gpt4o_en_easy.json" --dataset_handler "vcr-org/VCR-wiki-en-easy-test-500"
119
 
120
  # To get the mean score of all the `{model_id}_{difficulty}_{language}_evaluation_result.json` in `jsons_path` (and the std, confidence interval if `--bootstrap`) of the evaluation metrics
121
  python3 gather_results.py --jsons_path .
 
128
  # We use HuggingFaceM4/idefics2-8b and vcr_wiki_en_easy as an example
129
  python3 -m accelerate.commands.launch --num_processes=8 -m lmms_eval --model idefics2 --model_args pretrained="HuggingFaceM4/idefics2-8b" --tasks vcr_wiki_en_easy --batch_size 1 --log_samples --log_samples_suffix HuggingFaceM4_idefics2-8b_vcr_wiki_en_easy --output_path ./logs/
130
  ```
 
131
  `lmms-eval` supports the following VCR `--tasks` settings:
132
 
133
  * English