vevenom commited on
Commit
2d897ac
·
1 Parent(s): c7a7f28

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +177 -0
README.md ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # SCANnotateDataset
2
+ CAD model and pose annotations for objects in the ScanNet dataset. Annotations are automatically generated
3
+ using [scannotate](https://github.com/stefan-ainetter/SCANnotate) and [HOC-Search](https://arxiv.org/abs/2309.06107).
4
+ The quality of these annotations was verified in several verification passes,
5
+ with manual re-annotations performed for outliers to ensure that final annotations are of high quality.
6
+
7
+ <p align="center">
8
+ <img src="https://github.com/stefan-ainetter/SCANnotateDataset/tree/master/figures/example_annotation.png" width="100%"/>
9
+ </p>
10
+
11
+ ## Details about Annotations
12
+
13
+ For the public [ScanNet dataset](http://www.scan-net.org/), we provide:
14
+
15
+ * `18617` CAD model annotations for objects in the ScanNet dataset (30% more annotated objects compared to [Scan2CAD](https://github.com/skanti/Scan2CAD))
16
+ * Accurate 9D pose for each CAD model
17
+ * 3D semantic object instance segmentation corresponding to the annotated objects
18
+ * Automatically generated symmetry tags for ShapeNet CAD models for all categories present in ScanNet
19
+ * Extracted view parameters (selected RGB-D images and camera poses) for each object, which
20
+ can be used for CAD model retrieval via render-and-compare
21
+
22
+ ## CAD Model and Pose Annotations
23
+ Our annotations for ScanNet are provided as `.pkl` files, which
24
+ contain additional information about the annotated objects, e.g. view parameters for render-and-compare and the
25
+ corresponding 3D instance segmentation of the pointcloud data.
26
+
27
+ For convenience, we additionally provide the annotations as `.json` file using the scan2cad data format.
28
+
29
+ **Note** that in order to use any of the provided annotations correctly, you have to preprocess the ShapeNet
30
+ CAD models (center and scale-normalize all CAD models) as explained below,
31
+ to generate clean CAD models which are then compatible with our annotations.
32
+
33
+
34
+ ### Preliminaries: Download ShapeNet and ScanNet examples
35
+
36
+ * Download the ScanNet example scene [here](https://files.icg.tugraz.at/f/5b1b756a78bb457aafb5/?dl=1). Extract the data
37
+ and copy them to `/data/ScanNet/scans`. Note that by downloading this example data
38
+ you agree to the [ScanNet Terms of Use](https://kaldir.vc.in.tum.de/scannet/ScanNet_TOS.pdf).
39
+ To download the full ScanNet dataset follow the instructions on the [ScanNet GitHub page](https://github.com/ScanNet/ScanNet).
40
+
41
+ * Download the [ShapenetV2](https://shapenet.org/) dataset by signing up
42
+ on the website. Extract ShapeNetCore.v2.zip to `/data/ShapeNet`.
43
+
44
+ * Download our annotations for the full ScanNet dataset
45
+ [here](https://files.icg.tugraz.at/f/249aa5c3418f4c1897ee/?dl=1). Extract the data and copy them to
46
+ `/data/ScanNet/annotations`.
47
+
48
+ #### Preprocessing ShapeNet CAD Models
49
+ To center and scale-normalize the downloaded ShapeNet CAD models, run:
50
+ ```bash
51
+ bash run_shapenet_prepro.sh gpu=0
52
+ ```
53
+ The `gpu` argument specifies which GPU should be used for processing.
54
+ By default, code is executed on CPU.
55
+
56
+ After the above-mentioned steps the `/data` folder should contain the following directories:
57
+ ```text
58
+ - data
59
+ - ScanNet
60
+ - annotations
61
+ - scene0495_00
62
+ - ...
63
+ - scans
64
+ - scene0495_00
65
+ - ShapeNet
66
+ - ShapeNet_preprocessed
67
+ - ShapeNetCore.v2
68
+ ```
69
+
70
+ #### Installation Requirements and Setup
71
+
72
+ * Clone this repository. Install PyTorch3D by following the instructions from the
73
+ [official installation guide](https://github.com/facebookresearch/pytorch3d/blob/main/INSTALL.md).
74
+
75
+ After installing Pytorch3D, run the following command:
76
+ ```bash
77
+ pip install scikit-image matplotlib imageio plotly opencv-python open3d trimesh==3.10.2
78
+ ```
79
+
80
+ ### Annotations in Scan2CAD data format
81
+ Annotations in scan2cad format are available [here](https://files.icg.tugraz.at/f/aaaf656e64014745af15/?dl=1).
82
+ The file `full_annotions_scannotate.json` contains `1513` entries, where the field of one entry is described as:
83
+ ```javascript
84
+ [{
85
+ id_scan : "scannet scene id",
86
+ trs : { // <-- transformation from scan space to world space
87
+
88
+ translation : [tx, ty, tz], // <-- translation vector
89
+ rotation : [qw, qx, qy, qz], // <-- rotation quaternion
90
+ scale : [sx, sy, sz], // <-- scale vector
91
+ },
92
+ aligned_models : [{ // <-- list of aligned models for this scene
93
+ sym : "(__SYM_NONE, __SYM_ROTATE_UP_2, __SYM_ROTATE_UP_4 or __SYM_ROTATE_UP_INF)", // <-- symmetry property only one applies
94
+ catid_cad : "shapenet category id",
95
+ id_cad : "shapenet model id",
96
+ category_name : "", // e.g. chair,
97
+ trs : { // <-- transformation from CAD space to world space
98
+ translation : [tx, ty, tz], // <-- translation vector
99
+ rotation : [qw, qx, qy, qz], // <-- rotation quaternion
100
+ scale : [sx, sy, sz] // <-- scale vector
101
+ },
102
+ keypoints_scan : {}, // no keypoints in our annotations
103
+ keypoints_cad : {}, // no keypoints in our annotations
104
+ scannet_category_label: "", // e.g. chair; this label is taken from original ScanNet 3D object instance segmentation
105
+ object_id: "", // unique id for each annotated object in the scene
106
+ is_in_scan2cad: // <-- True if CAD annotation is available in scan2cad, else False
107
+ }]
108
+ },
109
+ { ... },
110
+ { ... },
111
+ ]
112
+ ```
113
+
114
+
115
+ ### Visualization of Annotations
116
+ Use the following command to visualize the annotations:
117
+ ```bash
118
+ bash visualize_annotations.sh
119
+ ```
120
+
121
+ ## ShapeNet Object Symmetry Annotations
122
+ Automatically generated symmetry tags for all CAD models of considered categories are available for download
123
+ [here](https://files.icg.tugraz.at/f/58469ba8edbd419abb6d/?dl=1). Symmetry
124
+ tags are saved in the following format:
125
+ ```javascript
126
+ [{
127
+ cad_symmetry_dict: { // Symmetry Tags for CAD models
128
+ synset_id: { // shapenet category id,
129
+ category_name: "", // e.g. chair,
130
+ synset_id: "",
131
+ object_sym_dict: { // <-- dictionary containing CAD model ids and corresponding symmetry tags
132
+ 'id_cad': 'symmetry_tag',
133
+ },
134
+ {...},
135
+ {...},
136
+ }
137
+ }
138
+ }]
139
+ ```
140
+
141
+ To predict the symmetry tag for a given CAD model, we first render depth maps from 6 different views of the
142
+ preprocessed CAD model.
143
+ We then rotate the object around the vertical axis by a specific angle (e.g. 180° to check for
144
+ __SYM_ROTATE_UP_2), and again render the depth maps of the 6 views. If the difference of depth renderings is below a
145
+ certain threshold, we assume that the object is symmetric according to the performed rotation.
146
+
147
+ <p align="center">
148
+ <img src="https://github.com/stefan-ainetter/SCANnotateDataset/tree/master/figures/example_symmetry_annotation.png" width="80%"/>
149
+ </p>
150
+
151
+ ## Citation
152
+ To create these annotations, we used the CAD model retrieval pipeline from
153
+ [scannotate](https://github.com/stefan-ainetter/SCANnotate), but replaced the exhaustive
154
+ CAD retrieval stage with [HOC-Search](https://arxiv.org/abs/2309.06107).
155
+ If you use any of the provided code or data, please cite the following works:
156
+
157
+ Scannotate:
158
+ ```bibtex
159
+ @inproceedings{ainetter2023automatically,
160
+ title={Automatically Annotating Indoor Images with CAD Models via RGB-D Scans},
161
+ author={Ainetter, Stefan and Stekovic, Sinisa and Fraundorfer, Friedrich and Lepetit, Vincent},
162
+ booktitle={Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision},
163
+ pages={3156--3164},
164
+ year={2023}
165
+ }
166
+ ```
167
+ HOC-Search:
168
+ ```bibtex
169
+ @misc{ainetter2023hocsearch,
170
+ title={HOC-Search: Efficient CAD Model and Pose Retrieval from RGB-D Scans},
171
+ author={Stefan Ainetter and Sinisa Stekovic and Friedrich Fraundorfer and Vincent Lepetit},
172
+ year={2023},
173
+ eprint={2309.06107},
174
+ archivePrefix={arXiv},
175
+ primaryClass={cs.CV}
176
+ }
177
+ ```