wasertech commited on
Commit
3b7cb69
·
verified ·
1 Parent(s): 98af916

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -3
README.md CHANGED
@@ -1,3 +1,68 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ ---
4
+ `TrainingSpeech` is an initiative to provide **open and freely reusable dataset** of voices
5
+
6
+ - for speech-to-text models training
7
+
8
+ - on non-english languages
9
+
10
+ - using already available data (such as audio-books).
11
+
12
+
13
+ Right now, data are extracted exclusively from audio-books and in French language. Let me know if you are intersted to contribute [by creating an issue](https://github.com/wasertech/TrainingSpeech/issues/new).
14
+
15
+
16
+
17
+ ## Tooling
18
+
19
+ `TrainingSpeech` comes with a CLI that automate and simplify:
20
+ - transcript extraction
21
+ - [forced-alignment](https://github.com/pettarin/forced-alignment-tools#definition-of-forced-alignment) (using [aeneas](https://github.com/readbeyond/aeneas))
22
+ - validation and correction
23
+
24
+
25
+
26
+ ## Common workflow
27
+
28
+ ### 1. Generate and validate alignment on existing source
29
+
30
+ 1. pick a source that have NOT been validated yet: see `python manage.py stats` and `./sources.json` for more info
31
+ 2. download assets (ie epub and mp3 files): `python manage.py download -s <SOURCE_NAME>`
32
+ 3. check alignment: `python manage.py check-alignment <SOURCE_NAME>` (may require multiple iterations)
33
+ 4. send a pull request with generated transcript and alignment
34
+
35
+ ### 2. Add New source (team members only)
36
+
37
+ 1. retrieve epub and corresponding mp3 file and store them into `./data/epubs` and `./data/mp3` (respectively)
38
+ 2. create new source into `./sources.json` (NB: all fields are mandatory)
39
+ 3. generate initial transcript using `python manage.py build-transcript <SOURCE_NAME>`
40
+ 4. upload epub and mp3 files on S3 `python manage.py upload -s <SOURCE_NAME>`
41
+
42
+
43
+ ## Dev setup
44
+
45
+ ```sh
46
+ $ sudo apt-get install -y ffmpeg espeak libespeak-dev python3-numpy python-numpy libncurses-dev libncursesw5-dev sox libsqlite3-dev
47
+ $ git clone [email protected]:wasertech/TrainingSpeech.git
48
+ $ pip3 install --user pipenv
49
+ $ cd TrainingSpeech
50
+ $ pipenv install --python=3.6.6
51
+ $ pipenv sync
52
+ $ pipenv shell
53
+ $ pytest
54
+ ```
55
+
56
+
57
+ ## Last releases & download
58
+ Releases are ready-to-use `zip` archives containing :
59
+ - short 16kHz 16bit wav audio speeches (0-15s)
60
+ - a single `data.csv` file with following columns:
61
+ - `path`: path to the audio file inside the archive
62
+ - `duration`: audio duration in second
63
+ - `text`: transcript
64
+
65
+
66
+ | Name | # speeches | # speakers | Total Duration | Language |
67
+ |:--------------------------------------------------------------------------------------------------------|-------------:|-------------:|:---------------|:-----------|
68
+ | [2019-04-11_fr_FR](https://huggingface.co/datasets/wasertech/TrainingSpeech/resolve/main/ts_2019-04-11_fr_FR.zip?download=true) (w/ 💖 from [@lissyx](https://github.com/lissyx)) | 124089 | 4 | 182:43:35 | fr_FR |