--- license: mit --- `TrainingSpeech` is an initiative to provide **open and freely reusable dataset** of voices - for speech-to-text models training - on non-english languages - using already available data (such as audio-books). Right now, data are extracted exclusively from audio-books and in French language. Let me know if you are intersted to contribute [by creating an issue](https://github.com/wasertech/TrainingSpeech/issues/new). ## Tooling `TrainingSpeech` comes with a CLI that automate and simplify: - transcript extraction - [forced-alignment](https://github.com/pettarin/forced-alignment-tools#definition-of-forced-alignment) (using [aeneas](https://github.com/readbeyond/aeneas)) - validation and correction ## Common workflow ### 1. Generate and validate alignment on existing source 1. pick a source that have NOT been validated yet: see `python manage.py stats` and `./sources.json` for more info 2. download assets (ie epub and mp3 files): `python manage.py download -s ` 3. check alignment: `python manage.py check-alignment ` (may require multiple iterations) 4. send a pull request with generated transcript and alignment ### 2. Add New source (team members only) 1. retrieve epub and corresponding mp3 file and store them into `./data/epubs` and `./data/mp3` (respectively) 2. create new source into `./sources.json` (NB: all fields are mandatory) 3. generate initial transcript using `python manage.py build-transcript ` 4. upload epub and mp3 files on S3 `python manage.py upload -s ` ## Dev setup ```sh $ sudo apt-get install -y ffmpeg espeak libespeak-dev python3-numpy python-numpy libncurses-dev libncursesw5-dev sox libsqlite3-dev $ git clone git@gitlab.com:wasertech/TrainingSpeech.git $ pip3 install --user pipenv $ cd TrainingSpeech $ pipenv install --python=3.6.6 $ pipenv sync $ pipenv shell $ pytest ``` ## Last releases & download Releases are ready-to-use `zip` archives containing : - short 16kHz 16bit wav audio speeches (0-15s) - a single `data.csv` file with following columns: - `path`: path to the audio file inside the archive - `duration`: audio duration in second - `text`: transcript | Name | # speeches | # speakers | Total Duration | Language | |:--------------------------------------------------------------------------------------------------------|-------------:|-------------:|:---------------|:-----------| | [2019-04-11_fr_FR](https://huggingface.co/datasets/wasertech/TrainingSpeech/resolve/main/ts_2019-04-11_fr_FR.zip?download=true) (w/ 💖 from [@lissyx](https://github.com/lissyx)) | 124089 | 4 | 182:43:35 | fr_FR |