will33am commited on
Commit
68ca385
·
1 Parent(s): 2dfe820
.ipynb_checkpoints/AVA-checkpoint.py CHANGED
@@ -60,8 +60,8 @@ class AVA(datasets.GeneratorBasedBuilder):
60
  _metadata = self.dict_metadata[_id]
61
  ex = {"image": {"path": path, "bytes": file.read()},
62
  "rating_counts": _metadata[0],
63
- "text_tag0":_metadata[1],
64
- "text_tag1": _metadata[2]}
65
  yield idx, ex
66
  idx += 1
67
 
 
60
  _metadata = self.dict_metadata[_id]
61
  ex = {"image": {"path": path, "bytes": file.read()},
62
  "rating_counts": _metadata[0],
63
+ "text_tag_0":_metadata[1],
64
+ "text_tag_1": _metadata[2]}
65
  yield idx, ex
66
  idx += 1
67
 
AVA.py CHANGED
@@ -60,8 +60,8 @@ class AVA(datasets.GeneratorBasedBuilder):
60
  _metadata = self.dict_metadata[_id]
61
  ex = {"image": {"path": path, "bytes": file.read()},
62
  "rating_counts": _metadata[0],
63
- "text_tag0":_metadata[1],
64
- "text_tag1": _metadata[2]}
65
  yield idx, ex
66
  idx += 1
67
 
 
60
  _metadata = self.dict_metadata[_id]
61
  ex = {"image": {"path": path, "bytes": file.read()},
62
  "rating_counts": _metadata[0],
63
+ "text_tag_0":_metadata[1],
64
+ "text_tag_1": _metadata[2]}
65
  yield idx, ex
66
  idx += 1
67
 
notebooks/Test.ipynb CHANGED
@@ -12,19 +12,19 @@
12
  },
13
  {
14
  "cell_type": "code",
15
- "execution_count": null,
16
  "id": "c0ed6498",
17
  "metadata": {},
18
  "outputs": [
19
  {
20
  "data": {
21
  "application/vnd.jupyter.widget-view+json": {
22
- "model_id": "8607aaefd4ee458b98aec32f63642db0",
23
  "version_major": 2,
24
  "version_minor": 0
25
  },
26
  "text/plain": [
27
- "Downloading builder script: 0%| | 0.00/2.16k [00:00<?, ?B/s]"
28
  ]
29
  },
30
  "metadata": {},
@@ -34,13 +34,13 @@
34
  "name": "stdout",
35
  "output_type": "stream",
36
  "text": [
37
- "Downloading and preparing dataset ava/default to /home/william/.cache/huggingface/datasets/will33am___ava/default/1.0.0/4a1b5bbeca6c4c8ebc7858b9db1c97ba665cd7960169246d8af476aa44a35153...\n"
38
  ]
39
  },
40
  {
41
  "data": {
42
  "application/vnd.jupyter.widget-view+json": {
43
- "model_id": "e940a8080e6d4f2ca4108940bfdbc895",
44
  "version_major": 2,
45
  "version_minor": 0
46
  },
@@ -50,6 +50,75 @@
50
  },
51
  "metadata": {},
52
  "output_type": "display_data"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53
  }
54
  ],
55
  "source": [
@@ -60,7 +129,7 @@
60
  {
61
  "cell_type": "code",
62
  "execution_count": null,
63
- "id": "65cf9d76",
64
  "metadata": {},
65
  "outputs": [],
66
  "source": []
 
12
  },
13
  {
14
  "cell_type": "code",
15
+ "execution_count": 2,
16
  "id": "c0ed6498",
17
  "metadata": {},
18
  "outputs": [
19
  {
20
  "data": {
21
  "application/vnd.jupyter.widget-view+json": {
22
+ "model_id": "cd5f00716a7c42bd9962e71e5585e952",
23
  "version_major": 2,
24
  "version_minor": 0
25
  },
26
  "text/plain": [
27
+ "Downloading builder script: 0%| | 0.00/2.17k [00:00<?, ?B/s]"
28
  ]
29
  },
30
  "metadata": {},
 
34
  "name": "stdout",
35
  "output_type": "stream",
36
  "text": [
37
+ "Downloading and preparing dataset ava/default to /home/william/.cache/huggingface/datasets/will33am___ava/default/1.0.0/7f76b3807b4156161ed44f936b3e89ecbab31823986cc11c2a46b584b358197b...\n"
38
  ]
39
  },
40
  {
41
  "data": {
42
  "application/vnd.jupyter.widget-view+json": {
43
+ "model_id": "40ff2d92e7a24fe4a1c169bb467e5dbc",
44
  "version_major": 2,
45
  "version_minor": 0
46
  },
 
50
  },
51
  "metadata": {},
52
  "output_type": "display_data"
53
+ },
54
+ {
55
+ "name": "stderr",
56
+ "output_type": "stream",
57
+ "text": [
58
+ "Computing checksums of downloaded files. They can be used for integrity verification. You can disable this by passing ignore_verifications=True to load_dataset\n"
59
+ ]
60
+ },
61
+ {
62
+ "data": {
63
+ "application/vnd.jupyter.widget-view+json": {
64
+ "model_id": "706a2a08eb364f0790c22a1a3ae053fe",
65
+ "version_major": 2,
66
+ "version_minor": 0
67
+ },
68
+ "text/plain": [
69
+ "Computing checksums: 100%|##########| 1/1 [01:33<00:00, 93.75s/it]"
70
+ ]
71
+ },
72
+ "metadata": {},
73
+ "output_type": "display_data"
74
+ },
75
+ {
76
+ "data": {
77
+ "application/vnd.jupyter.widget-view+json": {
78
+ "model_id": "5133a8f32d5a44829a7e2e1df96b3216",
79
+ "version_major": 2,
80
+ "version_minor": 0
81
+ },
82
+ "text/plain": [
83
+ "Generating train split: 0 examples [00:00, ? examples/s]"
84
+ ]
85
+ },
86
+ "metadata": {},
87
+ "output_type": "display_data"
88
+ },
89
+ {
90
+ "name": "stderr",
91
+ "output_type": "stream",
92
+ "text": [
93
+ "\n",
94
+ "0it [00:00, ?it/s]\u001b[A"
95
+ ]
96
+ },
97
+ {
98
+ "ename": "DatasetGenerationError",
99
+ "evalue": "An error occurred while generating the dataset",
100
+ "output_type": "error",
101
+ "traceback": [
102
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
103
+ "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)",
104
+ "File \u001b[0;32m/opt/conda/envs/hugginface/lib/python3.8/site-packages/datasets/builder.py:1587\u001b[0m, in \u001b[0;36mGeneratorBasedBuilder._prepare_split_single\u001b[0;34m(self, gen_kwargs, fpath, file_format, max_shard_size, split_info, check_duplicate_keys, job_id)\u001b[0m\n\u001b[1;32m 1578\u001b[0m writer \u001b[38;5;241m=\u001b[39m writer_class(\n\u001b[1;32m 1579\u001b[0m features\u001b[38;5;241m=\u001b[39mwriter\u001b[38;5;241m.\u001b[39m_features,\n\u001b[1;32m 1580\u001b[0m path\u001b[38;5;241m=\u001b[39mfpath\u001b[38;5;241m.\u001b[39mreplace(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mSSSSS\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mshard_id\u001b[38;5;132;01m:\u001b[39;00m\u001b[38;5;124m05d\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\u001b[38;5;241m.\u001b[39mreplace(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mJJJJJ\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mjob_id\u001b[38;5;132;01m:\u001b[39;00m\u001b[38;5;124m05d\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m),\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 1585\u001b[0m embed_local_files\u001b[38;5;241m=\u001b[39membed_local_files,\n\u001b[1;32m 1586\u001b[0m )\n\u001b[0;32m-> 1587\u001b[0m example \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minfo\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfeatures\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mencode_example\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrecord\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39minfo\u001b[38;5;241m.\u001b[39mfeatures \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m record\n\u001b[1;32m 1588\u001b[0m writer\u001b[38;5;241m.\u001b[39mwrite(example, key)\n",
105
+ "File \u001b[0;32m/opt/conda/envs/hugginface/lib/python3.8/site-packages/datasets/features/features.py:1800\u001b[0m, in \u001b[0;36mFeatures.encode_example\u001b[0;34m(self, example)\u001b[0m\n\u001b[1;32m 1799\u001b[0m example \u001b[38;5;241m=\u001b[39m cast_to_python_objects(example)\n\u001b[0;32m-> 1800\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mencode_nested_example\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mexample\u001b[49m\u001b[43m)\u001b[49m\n",
106
+ "File \u001b[0;32m/opt/conda/envs/hugginface/lib/python3.8/site-packages/datasets/features/features.py:1202\u001b[0m, in \u001b[0;36mencode_nested_example\u001b[0;34m(schema, obj, level)\u001b[0m\n\u001b[1;32m 1200\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mGot None but expected a dictionary instead\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 1201\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m (\n\u001b[0;32m-> 1202\u001b[0m {\n\u001b[1;32m 1203\u001b[0m k: encode_nested_example(sub_schema, sub_obj, level\u001b[38;5;241m=\u001b[39mlevel \u001b[38;5;241m+\u001b[39m \u001b[38;5;241m1\u001b[39m)\n\u001b[1;32m 1204\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m k, (sub_schema, sub_obj) \u001b[38;5;129;01min\u001b[39;00m zip_dict(schema, obj)\n\u001b[1;32m 1205\u001b[0m }\n\u001b[1;32m 1206\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m obj \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 1207\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 1208\u001b[0m )\n\u001b[1;32m 1210\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(schema, (\u001b[38;5;28mlist\u001b[39m, \u001b[38;5;28mtuple\u001b[39m)):\n",
107
+ "File \u001b[0;32m/opt/conda/envs/hugginface/lib/python3.8/site-packages/datasets/features/features.py:1202\u001b[0m, in \u001b[0;36m<dictcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 1200\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mGot None but expected a dictionary instead\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 1201\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m (\n\u001b[0;32m-> 1202\u001b[0m {\n\u001b[1;32m 1203\u001b[0m k: encode_nested_example(sub_schema, sub_obj, level\u001b[38;5;241m=\u001b[39mlevel \u001b[38;5;241m+\u001b[39m \u001b[38;5;241m1\u001b[39m)\n\u001b[1;32m 1204\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m k, (sub_schema, sub_obj) \u001b[38;5;129;01min\u001b[39;00m zip_dict(schema, obj)\n\u001b[1;32m 1205\u001b[0m }\n\u001b[1;32m 1206\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m obj \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 1207\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 1208\u001b[0m )\n\u001b[1;32m 1210\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(schema, (\u001b[38;5;28mlist\u001b[39m, \u001b[38;5;28mtuple\u001b[39m)):\n",
108
+ "File \u001b[0;32m/opt/conda/envs/hugginface/lib/python3.8/site-packages/datasets/utils/py_utils.py:302\u001b[0m, in \u001b[0;36mzip_dict\u001b[0;34m(*dicts)\u001b[0m\n\u001b[1;32m 300\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m key \u001b[38;5;129;01min\u001b[39;00m unique_values(itertools\u001b[38;5;241m.\u001b[39mchain(\u001b[38;5;241m*\u001b[39mdicts)): \u001b[38;5;66;03m# set merge all keys\u001b[39;00m\n\u001b[1;32m 301\u001b[0m \u001b[38;5;66;03m# Will raise KeyError if the dict don't have the same keys\u001b[39;00m\n\u001b[0;32m--> 302\u001b[0m \u001b[38;5;28;01myield\u001b[39;00m key, \u001b[38;5;28;43mtuple\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43md\u001b[49m\u001b[43m[\u001b[49m\u001b[43mkey\u001b[49m\u001b[43m]\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43md\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mdicts\u001b[49m\u001b[43m)\u001b[49m\n",
109
+ "File \u001b[0;32m/opt/conda/envs/hugginface/lib/python3.8/site-packages/datasets/utils/py_utils.py:302\u001b[0m, in \u001b[0;36m<genexpr>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 300\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m key \u001b[38;5;129;01min\u001b[39;00m unique_values(itertools\u001b[38;5;241m.\u001b[39mchain(\u001b[38;5;241m*\u001b[39mdicts)): \u001b[38;5;66;03m# set merge all keys\u001b[39;00m\n\u001b[1;32m 301\u001b[0m \u001b[38;5;66;03m# Will raise KeyError if the dict don't have the same keys\u001b[39;00m\n\u001b[0;32m--> 302\u001b[0m \u001b[38;5;28;01myield\u001b[39;00m key, \u001b[38;5;28mtuple\u001b[39m(\u001b[43md\u001b[49m\u001b[43m[\u001b[49m\u001b[43mkey\u001b[49m\u001b[43m]\u001b[49m \u001b[38;5;28;01mfor\u001b[39;00m d \u001b[38;5;129;01min\u001b[39;00m dicts)\n",
110
+ "\u001b[0;31mKeyError\u001b[0m: 'text_tag_0'",
111
+ "\nThe above exception was the direct cause of the following exception:\n",
112
+ "\u001b[0;31mDatasetGenerationError\u001b[0m Traceback (most recent call last)",
113
+ "File \u001b[0;32m<timed exec>:1\u001b[0m\n",
114
+ "File \u001b[0;32m/opt/conda/envs/hugginface/lib/python3.8/site-packages/datasets/load.py:1757\u001b[0m, in \u001b[0;36mload_dataset\u001b[0;34m(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, num_proc, **config_kwargs)\u001b[0m\n\u001b[1;32m 1754\u001b[0m try_from_hf_gcs \u001b[38;5;241m=\u001b[39m path \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m _PACKAGED_DATASETS_MODULES\n\u001b[1;32m 1756\u001b[0m \u001b[38;5;66;03m# Download and prepare data\u001b[39;00m\n\u001b[0;32m-> 1757\u001b[0m \u001b[43mbuilder_instance\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdownload_and_prepare\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1758\u001b[0m \u001b[43m \u001b[49m\u001b[43mdownload_config\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_config\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1759\u001b[0m \u001b[43m \u001b[49m\u001b[43mdownload_mode\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_mode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1760\u001b[0m \u001b[43m \u001b[49m\u001b[43mignore_verifications\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mignore_verifications\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1761\u001b[0m \u001b[43m \u001b[49m\u001b[43mtry_from_hf_gcs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtry_from_hf_gcs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1762\u001b[0m \u001b[43m \u001b[49m\u001b[43mnum_proc\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnum_proc\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1763\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1765\u001b[0m \u001b[38;5;66;03m# Build dataset for splits\u001b[39;00m\n\u001b[1;32m 1766\u001b[0m keep_in_memory \u001b[38;5;241m=\u001b[39m (\n\u001b[1;32m 1767\u001b[0m keep_in_memory \u001b[38;5;28;01mif\u001b[39;00m keep_in_memory \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m is_small_dataset(builder_instance\u001b[38;5;241m.\u001b[39minfo\u001b[38;5;241m.\u001b[39mdataset_size)\n\u001b[1;32m 1768\u001b[0m )\n",
115
+ "File \u001b[0;32m/opt/conda/envs/hugginface/lib/python3.8/site-packages/datasets/builder.py:860\u001b[0m, in \u001b[0;36mDatasetBuilder.download_and_prepare\u001b[0;34m(self, output_dir, download_config, download_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, file_format, max_shard_size, num_proc, storage_options, **download_and_prepare_kwargs)\u001b[0m\n\u001b[1;32m 858\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m num_proc \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 859\u001b[0m prepare_split_kwargs[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnum_proc\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m num_proc\n\u001b[0;32m--> 860\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_download_and_prepare\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 861\u001b[0m \u001b[43m \u001b[49m\u001b[43mdl_manager\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdl_manager\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 862\u001b[0m \u001b[43m \u001b[49m\u001b[43mverify_infos\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mverify_infos\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 863\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mprepare_split_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 864\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mdownload_and_prepare_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 865\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 866\u001b[0m \u001b[38;5;66;03m# Sync info\u001b[39;00m\n\u001b[1;32m 867\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39minfo\u001b[38;5;241m.\u001b[39mdataset_size \u001b[38;5;241m=\u001b[39m \u001b[38;5;28msum\u001b[39m(split\u001b[38;5;241m.\u001b[39mnum_bytes \u001b[38;5;28;01mfor\u001b[39;00m split \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39minfo\u001b[38;5;241m.\u001b[39msplits\u001b[38;5;241m.\u001b[39mvalues())\n",
116
+ "File \u001b[0;32m/opt/conda/envs/hugginface/lib/python3.8/site-packages/datasets/builder.py:1611\u001b[0m, in \u001b[0;36mGeneratorBasedBuilder._download_and_prepare\u001b[0;34m(self, dl_manager, verify_infos, **prepare_splits_kwargs)\u001b[0m\n\u001b[1;32m 1610\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_download_and_prepare\u001b[39m(\u001b[38;5;28mself\u001b[39m, dl_manager, verify_infos, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mprepare_splits_kwargs):\n\u001b[0;32m-> 1611\u001b[0m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_download_and_prepare\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1612\u001b[0m \u001b[43m \u001b[49m\u001b[43mdl_manager\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mverify_infos\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcheck_duplicate_keys\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mverify_infos\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mprepare_splits_kwargs\u001b[49m\n\u001b[1;32m 1613\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n",
117
+ "File \u001b[0;32m/opt/conda/envs/hugginface/lib/python3.8/site-packages/datasets/builder.py:953\u001b[0m, in \u001b[0;36mDatasetBuilder._download_and_prepare\u001b[0;34m(self, dl_manager, verify_infos, **prepare_split_kwargs)\u001b[0m\n\u001b[1;32m 949\u001b[0m split_dict\u001b[38;5;241m.\u001b[39madd(split_generator\u001b[38;5;241m.\u001b[39msplit_info)\n\u001b[1;32m 951\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 952\u001b[0m \u001b[38;5;66;03m# Prepare split will record examples associated to the split\u001b[39;00m\n\u001b[0;32m--> 953\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_prepare_split\u001b[49m\u001b[43m(\u001b[49m\u001b[43msplit_generator\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mprepare_split_kwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 954\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mOSError\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 955\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mOSError\u001b[39;00m(\n\u001b[1;32m 956\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCannot find data file. \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 957\u001b[0m \u001b[38;5;241m+\u001b[39m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmanual_download_instructions \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 958\u001b[0m \u001b[38;5;241m+\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124mOriginal error:\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 959\u001b[0m \u001b[38;5;241m+\u001b[39m \u001b[38;5;28mstr\u001b[39m(e)\n\u001b[1;32m 960\u001b[0m ) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;28mNone\u001b[39m\n",
118
+ "File \u001b[0;32m/opt/conda/envs/hugginface/lib/python3.8/site-packages/datasets/builder.py:1449\u001b[0m, in \u001b[0;36mGeneratorBasedBuilder._prepare_split\u001b[0;34m(self, split_generator, check_duplicate_keys, file_format, num_proc, max_shard_size)\u001b[0m\n\u001b[1;32m 1447\u001b[0m gen_kwargs \u001b[38;5;241m=\u001b[39m split_generator\u001b[38;5;241m.\u001b[39mgen_kwargs\n\u001b[1;32m 1448\u001b[0m job_id \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m0\u001b[39m\n\u001b[0;32m-> 1449\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m job_id, done, content \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_prepare_split_single(\n\u001b[1;32m 1450\u001b[0m gen_kwargs\u001b[38;5;241m=\u001b[39mgen_kwargs, job_id\u001b[38;5;241m=\u001b[39mjob_id, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39m_prepare_split_args\n\u001b[1;32m 1451\u001b[0m ):\n\u001b[1;32m 1452\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m done:\n\u001b[1;32m 1453\u001b[0m result \u001b[38;5;241m=\u001b[39m content\n",
119
+ "File \u001b[0;32m/opt/conda/envs/hugginface/lib/python3.8/site-packages/datasets/builder.py:1606\u001b[0m, in \u001b[0;36mGeneratorBasedBuilder._prepare_split_single\u001b[0;34m(self, gen_kwargs, fpath, file_format, max_shard_size, split_info, check_duplicate_keys, job_id)\u001b[0m\n\u001b[1;32m 1604\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(e, SchemaInferenceError) \u001b[38;5;129;01mand\u001b[39;00m e\u001b[38;5;241m.\u001b[39m__context__ \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 1605\u001b[0m e \u001b[38;5;241m=\u001b[39m e\u001b[38;5;241m.\u001b[39m__context__\n\u001b[0;32m-> 1606\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m DatasetGenerationError(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mAn error occurred while generating the dataset\u001b[39m\u001b[38;5;124m\"\u001b[39m) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01me\u001b[39;00m\n\u001b[1;32m 1608\u001b[0m \u001b[38;5;28;01myield\u001b[39;00m job_id, \u001b[38;5;28;01mTrue\u001b[39;00m, (total_num_examples, total_num_bytes, writer\u001b[38;5;241m.\u001b[39m_features, num_shards, shard_lengths)\n",
120
+ "\u001b[0;31mDatasetGenerationError\u001b[0m: An error occurred while generating the dataset"
121
+ ]
122
  }
123
  ],
124
  "source": [
 
129
  {
130
  "cell_type": "code",
131
  "execution_count": null,
132
+ "id": "72f30241",
133
  "metadata": {},
134
  "outputs": [],
135
  "source": []