Datasets:
Upload QuestionAndAnswerExtraction.ipynb
Browse filesAdd jupyter script used to create first version of dataset.
QuestionAndAnswerExtraction.ipynb
ADDED
@@ -0,0 +1,317 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "f31245e6",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"### Download entries from DIP-Bundestag and put them in a csv to further process them.\n",
|
9 |
+
"\n",
|
10 |
+
"See https://search.dip.bundestag.de/api/v1/swagger-ui/ for the API reference. We only request documents of the type antwort and based on the start and end date provided."
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "code",
|
15 |
+
"execution_count": null,
|
16 |
+
"id": "8af55e90",
|
17 |
+
"metadata": {},
|
18 |
+
"outputs": [],
|
19 |
+
"source": [
|
20 |
+
"import requests\n",
|
21 |
+
"from pprint import pprint\n",
|
22 |
+
"import pandas as pd\n",
|
23 |
+
"from pathlib import Path\n",
|
24 |
+
"from pprint import pprint\n",
|
25 |
+
"from tqdm import tqdm\n",
|
26 |
+
"from concurrent.futures import ThreadPoolExecutor\n",
|
27 |
+
"\n",
|
28 |
+
"DIP_URL = \"https://search.dip.bundestag.de/api/v1/drucksache\"\n",
|
29 |
+
"DIP_TOKEN = \"rgsaY4U.oZRQKUHdJhF9qguHMkwCGIoLaqEcaHjYLF\"\n",
|
30 |
+
"\n",
|
31 |
+
"START_DATE = \"2015-05-07\"\n",
|
32 |
+
"END_DATE = \"2023-07-09\"\n",
|
33 |
+
"\n",
|
34 |
+
"REQUEST_URL = f\"{DIP_URL}?f.drucksachetyp=Antwort&f.datum.start={START_DATE}&f.datum.end={END_DATE}&format=json&apikey={DIP_TOKEN}\"\n",
|
35 |
+
"\n",
|
36 |
+
"df = pd.DataFrame()\n",
|
37 |
+
"docs = []\n",
|
38 |
+
"res = requests.get(REQUEST_URL)\n",
|
39 |
+
"r_json = res.json()\n",
|
40 |
+
"old_cursor = r_json[\"cursor\"]\n",
|
41 |
+
"\n",
|
42 |
+
"with ThreadPoolExecutor(max_workers=10) as pool:\n",
|
43 |
+
" count = 0\n",
|
44 |
+
" while True:\n",
|
45 |
+
" for doc in tqdm(r_json[\"documents\"]):\n",
|
46 |
+
" docs.append(doc)\n",
|
47 |
+
" doc_id = doc[\"id\"]\n",
|
48 |
+
" doc_number = doc[\"fundstelle\"][\"dokumentnummer\"]\n",
|
49 |
+
" url = doc[\"fundstelle\"][\"pdf_url\"] \n",
|
50 |
+
" count += 1\n",
|
51 |
+
" res = requests.get(f\"{REQUEST_URL}&cursor={old_cursor}\")\n",
|
52 |
+
" r_json = res.json()\n",
|
53 |
+
" new_cursor = r_json[\"cursor\"]\n",
|
54 |
+
" if new_cursor == old_cursor:\n",
|
55 |
+
" print(\"Found same cursor. No new results.\")\n",
|
56 |
+
" break\n",
|
57 |
+
" old_cursor = new_cursor\n",
|
58 |
+
"\n",
|
59 |
+
"\n",
|
60 |
+
"df = df.from_records(docs)\n",
|
61 |
+
"print(f\"Extracted {len(df)} entries.\")\n",
|
62 |
+
"df.to_csv(\"raw_entries.csv\")"
|
63 |
+
]
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"cell_type": "markdown",
|
67 |
+
"id": "58b0055f",
|
68 |
+
"metadata": {},
|
69 |
+
"source": [
|
70 |
+
"### Read back csv written in previous step, and download the associated PDF with each entry"
|
71 |
+
]
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"cell_type": "code",
|
75 |
+
"execution_count": null,
|
76 |
+
"id": "1bf8044e",
|
77 |
+
"metadata": {},
|
78 |
+
"outputs": [],
|
79 |
+
"source": [
|
80 |
+
"\n",
|
81 |
+
"df = pd.read_csv(\"raw_entries.csv\")\n",
|
82 |
+
"\n",
|
83 |
+
"def download_file(download_path:Path,doc_id:str,url:str) -> None:\n",
|
84 |
+
" r = requests.get(url, allow_redirects=True)\n",
|
85 |
+
" if r.status_code != 200:\n",
|
86 |
+
" print(f\"Got status {r.status_code} for url {doc_id} and {url}\")\n",
|
87 |
+
" return False\n",
|
88 |
+
" with open(download_path / f\"{doc_id}.pdf\", 'wb') as f:\n",
|
89 |
+
" f.write(r.content)\n",
|
90 |
+
" \n",
|
91 |
+
" return True\n",
|
92 |
+
"\n",
|
93 |
+
"download_path = Path(\"./downloads2/\")\n",
|
94 |
+
"download_path.mkdir(exist_ok=True)\n",
|
95 |
+
"\n",
|
96 |
+
"\n",
|
97 |
+
"for i,row in df.iterrows():\n",
|
98 |
+
" pdf_url = eval(row[\"fundstelle\"])[\"pdf_url\"]\n",
|
99 |
+
" success = download_file(download_path,row[\"id\"],pdf_url)\n",
|
100 |
+
" df.at[i,\"download_success\"]=success\n",
|
101 |
+
"\n",
|
102 |
+
"df.to_csv(\"entries_with_download_status.csv\")"
|
103 |
+
]
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"cell_type": "markdown",
|
107 |
+
"id": "15959ea4",
|
108 |
+
"metadata": {},
|
109 |
+
"source": [
|
110 |
+
"\n",
|
111 |
+
"### Extract the text out of the downloaded pdfs"
|
112 |
+
]
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"cell_type": "code",
|
116 |
+
"execution_count": null,
|
117 |
+
"id": "7417bc4e",
|
118 |
+
"metadata": {},
|
119 |
+
"outputs": [],
|
120 |
+
"source": [
|
121 |
+
"import pandas as pd\n",
|
122 |
+
"import sys\n",
|
123 |
+
"import pdftotext\n",
|
124 |
+
"import fitz\n",
|
125 |
+
"import re\n",
|
126 |
+
"from pathlib import Path\n",
|
127 |
+
"from dehyphen import FlairScorer\n",
|
128 |
+
"from dehyphen import format\n",
|
129 |
+
"from tqdm import tqdm\n",
|
130 |
+
"\n",
|
131 |
+
"HEADER_HEIGHT = 78\n",
|
132 |
+
"FOOTER_HEIGHT = 70\n",
|
133 |
+
"\n",
|
134 |
+
"QUESTION_FONT_SIZE = 9.609999656677246\n",
|
135 |
+
"ANSWER_FONT_SIZE = 10.678000450134277\n",
|
136 |
+
"BULLET_POINT_ANSWER_SIZE = 6.0\n",
|
137 |
+
"\n",
|
138 |
+
"OUTPUT_PATH = 'raw_text_blocks.csv'\n",
|
139 |
+
"\n",
|
140 |
+
"scorer = FlairScorer(lang=\"de\")\n",
|
141 |
+
"pattern = r'^\\s*\\d+\\.\\s*' # Matches a number followed by a dot and a space at the beginning of the string\n",
|
142 |
+
"\n",
|
143 |
+
"\n",
|
144 |
+
"def process_text_block(block:dict = {},pdf_path:Path = None,remove_q_numbers: bool = False):\n",
|
145 |
+
" txt = []\n",
|
146 |
+
" font = None\n",
|
147 |
+
"\n",
|
148 |
+
" for line in block.get(\"lines\", []):\n",
|
149 |
+
" for span in line[\"spans\"]:\n",
|
150 |
+
" span_txt = span[\"text\"]\n",
|
151 |
+
" span_font = span[\"font\"]\n",
|
152 |
+
" span_font_size = span[\"size\"]\n",
|
153 |
+
" if span_txt==\"\" or span_txt.isspace():\n",
|
154 |
+
" #print(f\"Found empty string or only spaces in document {pdf_path}\")\n",
|
155 |
+
" continue\n",
|
156 |
+
" if font is None:\n",
|
157 |
+
" span_type = \"Unknown\"\n",
|
158 |
+
" if span_font_size == QUESTION_FONT_SIZE:\n",
|
159 |
+
" span_type = \"Question\"\n",
|
160 |
+
" if remove_q_numbers:\n",
|
161 |
+
" span_txt = re.sub(pattern,\"\",span_txt)\n",
|
162 |
+
" elif span_font_size in [BULLET_POINT_ANSWER_SIZE,ANSWER_FONT_SIZE]:\n",
|
163 |
+
" span_type = \"Answer\"\n",
|
164 |
+
" font = (span_font, span_font_size, span_type)\n",
|
165 |
+
" txt.append(span_txt)\n",
|
166 |
+
"\n",
|
167 |
+
" if len(txt) > 1:\n",
|
168 |
+
" txt_joined = \"\\n\".join(txt)\n",
|
169 |
+
" txt_formatted = format.text_to_format(txt_joined)\n",
|
170 |
+
" txt_dehyphenated = scorer.dehyphen(txt_formatted)\n",
|
171 |
+
" txt = format.format_to_text(txt_dehyphenated)\n",
|
172 |
+
" else:\n",
|
173 |
+
" if len(txt) == 0:\n",
|
174 |
+
" txt = \"\"\n",
|
175 |
+
" else:\n",
|
176 |
+
" txt = txt[0]\n",
|
177 |
+
" txt = txt.strip()\n",
|
178 |
+
" if font is not None:\n",
|
179 |
+
" result = {\"file\": pdf_path.name, \"txt\": txt, \"font\": font[0], \"size\": font[1], \"type\": font[2]}\n",
|
180 |
+
" else:\n",
|
181 |
+
" result = {\"file\": pdf_path.name, \"txt\": \"Error\", \"font\": \"Error\", \"size\":\"Error\", \"type\": \"Error\"}\n",
|
182 |
+
" return result\n",
|
183 |
+
"\n",
|
184 |
+
"\n",
|
185 |
+
"processed = []\n",
|
186 |
+
"if Path(OUTPUT_PATH).exists():\n",
|
187 |
+
" df = pd.read_csv(OUTPUT_PATH,sep=\"|\")\n",
|
188 |
+
" processed = df[\"file\"].values\n",
|
189 |
+
"else:\n",
|
190 |
+
" df = pd.DataFrame()\n",
|
191 |
+
"\n",
|
192 |
+
"res = []\n",
|
193 |
+
"for pdf_path in tqdm(Path(\"./downloads2\").glob(\"*.pdf\"),desc=\"docs\"):\n",
|
194 |
+
"\n",
|
195 |
+
" if pdf_path.name in processed:\n",
|
196 |
+
" print(f\"Found pdf in df: {pdf_path}\")\n",
|
197 |
+
" continue\n",
|
198 |
+
"\n",
|
199 |
+
" doc = fitz.open(pdf_path) # open a document\n",
|
200 |
+
"\n",
|
201 |
+
" for i,page in enumerate(doc): # iterate the document pages\n",
|
202 |
+
" #page.draw_rect([0,HEADER_HEIGHT,page.rect.width,page.rect.height - FOOTER_HEIGHT])\n",
|
203 |
+
" res_raw = page.get_text(\"dict\",clip = [0,HEADER_HEIGHT,page.rect.width,page.rect.height - FOOTER_HEIGHT])\n",
|
204 |
+
" blocks = res_raw[\"blocks\"] # blocks on page\n",
|
205 |
+
"\n",
|
206 |
+
" for block in blocks:\n",
|
207 |
+
" try:\n",
|
208 |
+
" block_res = process_text_block(block,pdf_path)\n",
|
209 |
+
" if block_res[\"type\"] != \"Unknown\" and block_res[\"type\"] != \"Error\":\n",
|
210 |
+
" res.append(block_res)\n",
|
211 |
+
" except Exception as e:\n",
|
212 |
+
" print(str(e),block)\n",
|
213 |
+
"\n",
|
214 |
+
"\n",
|
215 |
+
" #print(len(res))\n",
|
216 |
+
" if len(res) > 100:\n",
|
217 |
+
" df = pd.DataFrame.from_dict(res)\n",
|
218 |
+
"\n",
|
219 |
+
" df.to_csv(OUTPUT_PATH, mode='a', header=not Path(OUTPUT_PATH).exists(),index=False,sep=\"|\")\n",
|
220 |
+
" df = pd.DataFrame()\n",
|
221 |
+
" res = []\n"
|
222 |
+
]
|
223 |
+
},
|
224 |
+
{
|
225 |
+
"cell_type": "markdown",
|
226 |
+
"id": "c9d709c4",
|
227 |
+
"metadata": {},
|
228 |
+
"source": [
|
229 |
+
"### Transform raw text into question / answer tuples"
|
230 |
+
]
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"cell_type": "code",
|
234 |
+
"execution_count": null,
|
235 |
+
"id": "98cb494b",
|
236 |
+
"metadata": {},
|
237 |
+
"outputs": [],
|
238 |
+
"source": [
|
239 |
+
"df_f = pd.read_csv(\"./raw_text_blocks.csv\",sep=\"|\")\n",
|
240 |
+
"print(len(df_f))\n",
|
241 |
+
"files = df_f.groupby('file')\n",
|
242 |
+
"\n",
|
243 |
+
"pairs = []\n",
|
244 |
+
"for i,group in files:\n",
|
245 |
+
"\n",
|
246 |
+
" i = iter(group.groupby([(group.type != group.type.shift()).cumsum()]))\n",
|
247 |
+
"\n",
|
248 |
+
" try:\n",
|
249 |
+
" while True:\n",
|
250 |
+
" elem1 = next(i)\n",
|
251 |
+
" if set(elem1[1].type.values) != {\"Question\"}:\n",
|
252 |
+
" print(\"Broken\")\n",
|
253 |
+
" continue\n",
|
254 |
+
" elem2 = next(i)\n",
|
255 |
+
" if set(elem2[1].type.values) != {\"Answer\"}:\n",
|
256 |
+
" print(\"Broken\")\n",
|
257 |
+
" continue\n",
|
258 |
+
"\n",
|
259 |
+
" pair = {}\n",
|
260 |
+
" pair[\"question\"] = \"\\n\".join(list(elem1[1].txt.values))\n",
|
261 |
+
" pair[\"answer\"] = \"\\n\".join(list(elem2[1].txt.values))\n",
|
262 |
+
" pair[\"doc_id\"] = group.file.unique()[0].split(\".\")[0]\n",
|
263 |
+
" pairs.append(pair)\n",
|
264 |
+
" except StopIteration:\n",
|
265 |
+
" pass\n",
|
266 |
+
" \n",
|
267 |
+
"df_res = pd.DataFrame.from_records(pairs)\n",
|
268 |
+
"df_res.to_csv(\"final.csv\")"
|
269 |
+
]
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"cell_type": "code",
|
273 |
+
"execution_count": null,
|
274 |
+
"id": "9a816523",
|
275 |
+
"metadata": {},
|
276 |
+
"outputs": [],
|
277 |
+
"source": []
|
278 |
+
},
|
279 |
+
{
|
280 |
+
"cell_type": "code",
|
281 |
+
"execution_count": null,
|
282 |
+
"id": "4a21ca40",
|
283 |
+
"metadata": {},
|
284 |
+
"outputs": [],
|
285 |
+
"source": []
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"cell_type": "code",
|
289 |
+
"execution_count": null,
|
290 |
+
"id": "1ca5572b",
|
291 |
+
"metadata": {},
|
292 |
+
"outputs": [],
|
293 |
+
"source": []
|
294 |
+
}
|
295 |
+
],
|
296 |
+
"metadata": {
|
297 |
+
"kernelspec": {
|
298 |
+
"display_name": "Python 3 (ipykernel)",
|
299 |
+
"language": "python",
|
300 |
+
"name": "python3"
|
301 |
+
},
|
302 |
+
"language_info": {
|
303 |
+
"codemirror_mode": {
|
304 |
+
"name": "ipython",
|
305 |
+
"version": 3
|
306 |
+
},
|
307 |
+
"file_extension": ".py",
|
308 |
+
"mimetype": "text/x-python",
|
309 |
+
"name": "python",
|
310 |
+
"nbconvert_exporter": "python",
|
311 |
+
"pygments_lexer": "ipython3",
|
312 |
+
"version": "3.10.6"
|
313 |
+
}
|
314 |
+
},
|
315 |
+
"nbformat": 4,
|
316 |
+
"nbformat_minor": 5
|
317 |
+
}
|