# coding=utf-8 # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Mirror of https://github.com/Alab-NII/2wikimultihop """ import json import datasets import pandas as pd _DESCRIPTION = """\ Mirror of https://github.com/Alab-NII/2wikimultihop """ CITATION = """ @inproceedings{xanh2020_2wikimultihop, title = "Constructing A Multi-hop {QA} Dataset for Comprehensive Evaluation of Reasoning Steps", author = "Ho, Xanh and Duong Nguyen, Anh-Khoa and Sugawara, Saku and Aizawa, Akiko", booktitle = "Proceedings of the 28th International Conference on Computational Linguistics", month = dec, year = "2020", address = "Barcelona, Spain (Online)", publisher = "International Committee on Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.coling-main.580", pages = "6609--6625", } """ DEV_URL = "https://huggingface.co/datasets/somebody-had-to-do-it/2WikiMultihopQA/resolve/main/dev.parquet?download=true" TRAIN_URL = "https://huggingface.co/datasets/somebody-had-to-do-it/2WikiMultihopQA/resolve/main/train.parquet?download=true" TEST_URL = "https://huggingface.co/datasets/somebody-had-to-do-it/2WikiMultihopQA/resolve/main/test.parquet?download=true" class Dataset2WikiMultihopQa(datasets.GeneratorBasedBuilder): """Mirror of https://github.com/Alab-NII/2wikimultihop""" VERSION = datasets.Version("1.0.0") def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "_id": datasets.Value("string"), "type": datasets.Value("string"), "question": datasets.Value("string"), "context": datasets.features.Sequence( { "title": datasets.Value("string"), "content": datasets.features.Sequence( datasets.Value("string") ), } ), "supporting_facts": datasets.features.Sequence( { "title": datasets.Value("string"), "sent_id": datasets.Value("int32"), } ), "evidences": datasets.features.Sequence( { "fact": datasets.Value("string"), "relation": datasets.Value("string"), "entity": datasets.Value("string"), } ), "answer": datasets.Value("string"), } ), supervised_keys=None, homepage="https://github.com/Alab-NII/2wikimultihop", citation=CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" train_uri = dl_manager.download(TRAIN_URL) dev_uri = dl_manager.download(DEV_URL) test_uri = dl_manager.download(TEST_URL) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_uri} ), datasets.SplitGenerator( name=datasets.Split("dev"), gen_kwargs={"filepath": dev_uri, "split": "dev"}, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": test_uri}, ), ] def _generate_examples(self, filepath, *args, **kwargs): """Yields examples from a Parquet file.""" # Read the Parquet file into a DataFrame df = pd.read_parquet(filepath) # Iterate over each row in the DataFrame for idx, row in df.iterrows(): yield idx, { "_id": row["_id"], "type": row["type"], "question": row["question"], "context": [ {"title": item[0], "content": item[1]} for item in json.loads(row["context"]) ], "supporting_facts": [ {"title": fact[0], "sent_id": fact[1]} for fact in json.loads(row["supporting_facts"]) ], "evidences": [ { "fact": evidence[0], "relation": evidence[1], "entity": evidence[2], } for evidence in json.loads(row["evidences"]) ], "answer": row["answer"], }