from transformers import AutoFeatureExtractor from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from PIL import Image import numpy as np def check_safety(x_image): safety_model_id = "CompVis/stable-diffusion-safety-checker" safety_feature_extractor = AutoFeatureExtractor.from_pretrained(safety_model_id) safety_checker = StableDiffusionSafetyChecker.from_pretrained(safety_model_id) safety_checker_input = safety_feature_extractor(numpy_to_pil(x_image), return_tensors="pt") x_checked_image, has_nsfw_concept = safety_checker(images=x_image, clip_input=safety_checker_input.pixel_values) assert x_checked_image.shape[0] == len(has_nsfw_concept) for i in range(len(has_nsfw_concept)): if has_nsfw_concept[i]: x_checked_image[i] = load_replacement(x_checked_image[i]) return x_checked_image, has_nsfw_concept def numpy_to_pil(images): """ Convert a numpy image or a batch of images to a PIL image. """ if images.ndim == 3: images = images[None, ...] images = (images * 255).round().astype("uint8") pil_images = [Image.fromarray(image) for image in images] return pil_images def load_replacement(x): try: hwc = x.shape y = Image.open("html/NSFW_replace.jpg").convert("RGB").resize((hwc[1], hwc[0])) y = (np.array(y)/255.0).astype(x.dtype) assert y.shape == x.shape return y except Exception as e: return x