File size: 9,923 Bytes
de14cb0 ec97b77 de14cb0 ec97b77 de14cb0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"id": "YbyU8YKP5KOh"
},
"outputs": [],
"source": [
"# Capture to supress the download ouput\n",
"%%capture\n",
"!pip install datasets evaluate transformers;\n",
"!pip install huggingface_hub;\n",
"!pip install pandas;"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "hzlMD2hyVrtD",
"outputId": "53ad9ba2-a64b-4bd8-eeca-4449035b0595"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Mounted at /content/drive\n"
]
}
],
"source": [
"# Load dataset with google drive\n",
"# We downloaded the dataset from kaggle and uploaded it to google drive, then used google colab to load\n",
"# It is possible to download it directly using the kaggle api\n",
"\n",
"# Link to dataset: https://www.kaggle.com/datasets/engraqeel/iot23preprocesseddata?resource=download\n",
"# Link to kaggle api docs: https://www.kaggle.com/docs/api#interacting-with-datasets\n",
"\n",
"from google.colab import drive\n",
"drive.mount('/content/drive')\n",
"reduced_iot_path = \"/content/drive/MyDrive/PATH/TO/FILE/iot23_combined_new.csv\""
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"id": "9fLFeygkITnn"
},
"outputs": [],
"source": [
"import pandas as pd\n",
"\n",
"# Define Features\n",
"# ts\tuid\tid.orig_h\tid.orig_p\tid.resp_h\tid.resp_p\tproto\tservice\tduration\torig_bytes\tresp_bytes\tconn_state\tlocal_orig\tlocal_resp\tmissed_bytes\thistory\torig_pkts\torig_ip_bytes\tresp_pkts\tresp_ip_bytes\tlabel\n",
"# https://docs.zeek.org/en/master/scripts/base/protocols/conn/main.zeek.html#type-Conn::Info\n",
"\n",
"pandas_features = {\n",
" 'id.orig_p': int,\n",
" 'id.resp_p': int,\n",
" 'proto': str,\n",
" 'service': str,\n",
" 'duration': float,\n",
" 'orig_bytes': pd.Int64Dtype(),\n",
" 'resp_bytes': pd.Int64Dtype(),\n",
" 'conn_state': str,\n",
" 'missed_bytes': pd.Int64Dtype(),\n",
" 'history': str,\n",
" 'orig_pkts': pd.Int64Dtype(),\n",
" 'orig_ip_bytes': pd.Int64Dtype(),\n",
" 'resp_pkts': pd.Int64Dtype(),\n",
" 'resp_ip_bytes': pd.Int64Dtype(),\n",
" 'label': str\n",
"}\n",
"\n",
"all_column_names = ['ts', 'uid', 'id.orig_h', 'id.orig_p', 'id.resp_h', 'id.resp_p', 'proto', 'service', 'duration', 'orig_bytes', 'resp_bytes', 'conn_state', 'local_orig', 'local_resp', 'missed_bytes', 'history', 'orig_pkts', 'orig_ip_bytes', 'resp_pkts', 'resp_ip_bytes', 'label'];\n",
"important_column_names = ['id.resp_p', 'proto', 'conn_state', 'orig_pkts', 'orig_ip_bytes', 'resp_ip_bytes', 'label'];\n",
"exclude_column_names = ['ts','uid','id.orig_h', 'id.resp_h', 'local_orig', 'local_resp']\n",
"\n",
"column_names = [column for column in all_column_names if column not in exclude_column_names]"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"id": "Zll2DOeT9yv2"
},
"outputs": [],
"source": [
"# Load dataset with Pandas\n",
"from datasets import Dataset\n",
"import pandas as pd\n",
"reduced_iot_dataset_pandas = pd.read_csv(reduced_iot_path, usecols=column_names, na_values=['-'], dtype=pandas_features)"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"id": "SUb01Eg7I7wS"
},
"outputs": [],
"source": [
"# Remove Duplicates\n",
"reduced_iot_dataset_pandas = reduced_iot_dataset_pandas.drop_duplicates()"
]
},
{
"cell_type": "code",
"source": [
"# Make label Benign / Malicious\n",
"reduced_iot_dataset_pandas['label'] = reduced_iot_dataset_pandas['label'].apply(lambda x: \"Benign\" if x == \"Benign\" else \"Malicious\")"
],
"metadata": {
"id": "M06Rb8fj2fzk"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "xamjYrWbgxkf",
"outputId": "1ddb22b6-98ab-44b4-83e1-b995e8c1ea4a"
},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"orig_bytes\n",
"0 564771\n",
"<NA> 241092\n",
"48 2121\n",
"29 1463\n",
"45 1348\n",
" ... \n",
"1088 1\n",
"1093 1\n",
"1094 1\n",
"1104 1\n",
"770 1\n",
"Length: 431, dtype: int64"
]
},
"metadata": {},
"execution_count": 8
}
],
"source": [
"# Test distribution of data\n",
"reduced_iot_dataset_pandas.value_counts('orig_bytes', dropna=False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Js3KG0xNvwpf"
},
"outputs": [],
"source": [
"# Final step: convert to hugging face dataset\n",
"reduced_iot_dataset = Dataset.from_pandas(reduced_iot_dataset_pandas).remove_columns(\"__index_level_0__\")"
]
},
{
"cell_type": "code",
"source": [
"# Test distribution of data again\n",
"reduced_iot_dataset.to_pandas().value_counts('orig_bytes', dropna=False)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "pOxVs7H-0-3k",
"outputId": "dcd084dd-3369-4d8e-91ca-c9fbfc1636f0"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"orig_bytes\n",
"0.0 564771\n",
"NaN 241092\n",
"48.0 2121\n",
"29.0 1463\n",
"45.0 1348\n",
" ... \n",
"1088.0 1\n",
"1093.0 1\n",
"1094.0 1\n",
"1104.0 1\n",
"770.0 1\n",
"Length: 431, dtype: int64"
]
},
"metadata": {},
"execution_count": 12
}
]
},
{
"cell_type": "code",
"source": [
"# Authenticate hugging face\n",
"!huggingface-cli login"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "pq6DF3Z8wdmF",
"outputId": "aaf5e476-96ce-4edc-d65c-858a7e4e52ec"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"\n",
" _| _| _| _| _|_|_| _|_|_| _|_|_| _| _| _|_|_| _|_|_|_| _|_| _|_|_| _|_|_|_|\n",
" _| _| _| _| _| _| _| _|_| _| _| _| _| _| _| _|\n",
" _|_|_|_| _| _| _| _|_| _| _|_| _| _| _| _| _| _|_| _|_|_| _|_|_|_| _| _|_|_|\n",
" _| _| _| _| _| _| _| _| _| _| _|_| _| _| _| _| _| _| _|\n",
" _| _| _|_| _|_|_| _|_|_| _|_|_| _| _| _|_|_| _| _| _| _|_|_| _|_|_|_|\n",
" \n",
" A token is already saved on your machine. Run `huggingface-cli whoami` to get more information or `huggingface-cli logout` if you want to log out.\n",
" Setting a new token will erase the existing one.\n",
" To login, `huggingface_hub` requires a token generated from https://huggingface.co/settings/tokens .\n",
"Token: \n",
"Add token as git credential? (Y/n) Y\n",
"Token is valid (permission: write).\n",
"Your token has been saved in your configured git credential helpers (store).\n",
"Your token has been saved to /root/.cache/huggingface/token\n",
"Login successful\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"# Push to the hugging face hub\n",
"reduced_iot_dataset.push_to_hub(\"yashika0998/iot-23-preprocessed-allcolumns\")"
],
"metadata": {
"id": "Nz5RwnjxwnwY"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# Test loading the data set\n",
"from datasets import load_dataset\n",
"pulledDataSet= load_dataset(\"yashika0998/iot-23-preprocessed\", download_mode=\"force_redownload\")"
],
"metadata": {
"id": "6rMEA58Pzlyx"
},
"execution_count": null,
"outputs": []
}
],
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 0
} |