|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Cleaned Dutch split of the mC4 corpus.""" |
|
|
|
|
|
import json |
|
import datasets |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
_HOMEPAGE = "https://github.com/EdinburghNLP/XSum/tree/master/XSum-Dataset" |
|
|
|
_CITATION = """ |
|
@article{Narayan2018DontGM, |
|
title={Don't Give Me the Details, Just the Summary! Topic-Aware Convolutional Neural Networks for Extreme Summarization}, |
|
author={Shashi Narayan and Shay B. Cohen and Mirella Lapata}, |
|
journal={ArXiv}, |
|
year={2018}, |
|
volume={abs/1808.08745} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """ |
|
Extreme Summarization (XSum) Dataset. |
|
There are three features: |
|
- document: Input news article. |
|
- summary: One sentence summary of the article. |
|
- id: BBC ID of the article. |
|
|
|
""" |
|
|
|
|
|
_DATA_URL_NL = "https://huggingface.co/datasets/yhavinga/xsum_dutch/resolve/main/{config}/{split}.json.gz" |
|
|
|
|
|
_DOCUMENT = "document" |
|
_SUMMARY = "summary" |
|
_ID = "id" |
|
|
|
_SUPPORTED_VERSIONS = [ |
|
datasets.Version("1.0.0", "Default version."), |
|
] |
|
|
|
|
|
class XsumDutchConfig(datasets.BuilderConfig): |
|
def __init__(self, **kwargs): |
|
super().__init__(**kwargs) |
|
|
|
|
|
class XsumDutch(datasets.GeneratorBasedBuilder): |
|
BUILDER_CONFIGS = [ |
|
XsumDutchConfig( |
|
name=str(version), description=version.description |
|
) |
|
for version in _SUPPORTED_VERSIONS |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
_DOCUMENT: datasets.Value("string"), |
|
_SUMMARY: datasets.Value("string"), |
|
"id": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
result = [ |
|
datasets.SplitGenerator( |
|
name=split, |
|
gen_kwargs={ |
|
"filepath": dl_manager.download_and_extract( |
|
_DATA_URL_NL.format(split=str(split), config=str(self.config.name)) |
|
) |
|
}, |
|
) |
|
for split in [ |
|
datasets.Split.TRAIN, |
|
datasets.Split.VALIDATION, |
|
datasets.Split.TEST, |
|
] |
|
] |
|
return result |
|
|
|
def _generate_examples(self, filepath): |
|
"""This function returns the examples in the raw (text) form by iterating on all the files.""" |
|
logger.info(f"Generating examples from {filepath}") |
|
|
|
with open(filepath, "r") as file: |
|
for _id, line in enumerate(file): |
|
example = json.loads(line) |
|
yield _id, example |
|
|