annotated_reference_strings / annotated_reference_strings.py
Yuan Chuan Kee
Updated the dataset with numbered parts
cd16465
raw
history blame
3.01 kB
"""\
Annotated Reference Strings dataset synthesized using CSL processor on citations obtained from CrossRef, JSTOR and
PubMed
"""
import gzip
import json
import os
import datasets
_CITATION = """\
@techreport{kee2021,
author = {Yuan Chuan Kee},
title = {Synthesis of a large dataset of annotated reference strings for developing citation parsers},
institution = {National University of Singapore},
year = {2021}
}
"""
_DESCRIPTION = """\
A repository of reference strings annotated using CSL processor using citations obtained from various sources.
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = "https://www.github.com/kylase"
_LICENSE = "cc-by-4.0"
_BASE_URL = "https://huggingface.co/datasets/yuanchuan/annotated_reference_strings/resolve/main/data"
_URL_FORMAT = "{base_url}/{source}-part-{part:05}.jsonl.gz"
_SOURCES_PARTS = {
"crossref": 16,
"pubmed": 32,
"jstor": 1
}
_URLs = {
"default": [
_URL_FORMAT.format(base_url=_BASE_URL, source=source, part=i)
for source, total_parts in _SOURCES_PARTS.items()
for i in range(1, total_parts + 1)
]
}
class AnnotatedReferenceStringsDataset(datasets.GeneratorBasedBuilder):
"""Annotated Reference Strings dataset"""
VERSION = datasets.Version("0.2.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="default", version=VERSION,
description="This dataset is the raw representation without tokenization."),
]
DEFAULT_CONFIG_NAME = "default"
def _info(self):
features = datasets.Features(
{
"source": datasets.Value("string"),
"lang": datasets.Value("string"),
"entry_type": datasets.Value("string"),
"doi_prefix": datasets.Value("string"),
"csl_style": datasets.Value("string"),
"content": datasets.Value("string")
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
data_urls = _URLs[self.config.name]
files = dl_manager.download(data_urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepaths": files,
"split": "train",
},
)
]
def _generate_examples(self, filepaths, split):
id_ = 0
for filepath in filepaths:
with gzip.open(open(filepath, "rb"), "rt", encoding="utf-8") as f:
for line in f:
if line:
example = json.loads(line)
yield id_, example
id_ += 1