"""\ Annotated Reference Strings dataset synthesized using CSL processor on citations obtained from CrossRef, JSTOR and PubMed """ import gzip import json import datasets _CITATION = """\ @techreport{kee2021, author = {Yuan Chuan Kee}, title = {Synthesis of a large dataset of annotated reference strings for developing citation parsers}, institution = {National University of Singapore}, year = {2021} } """ _DESCRIPTION = """\ A repository of reference strings annotated using CSL processor using citations obtained from various sources. """ # TODO: Add a link to an official homepage for the dataset here _HOMEPAGE = "https://www.github.com/kylase" _LICENSE = "cc-by-4.0" _BASE_URL = "https://huggingface.co/datasets/yuanchuan/annotated_reference_strings/resolve/main" _URL_FORMAT = "{base_url}/{lang}/{source}-part-{part:05}.jsonl.gz" _SOURCES_PARTS = { "crossref": 16, "pubmed": 32, "jstor": 1 } _URLs = { "default": [ _URL_FORMAT.format(base_url=_BASE_URL, lang="en", source=source, part=i) for source, total_parts in _SOURCES_PARTS.items() for i in range(1, total_parts + 1) ] } class AnnotatedReferenceStringsDataset(datasets.GeneratorBasedBuilder): """Annotated Reference Strings dataset""" VERSION = datasets.Version("0.2.1") BUILDER_CONFIGS = [ datasets.BuilderConfig(name="default", version=VERSION, description="This dataset is the raw representation without tokenization."), ] DEFAULT_CONFIG_NAME = "default" def _info(self): features = datasets.Features( { "source": datasets.Value("string"), "lang": datasets.Value("string"), "entry_type": datasets.Value("string"), "doi_prefix": datasets.Value("string"), "csl_style": datasets.Value("string"), "content": datasets.Value("string") } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" data_urls = _URLs[self.config.name] files = dl_manager.download(data_urls) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepaths": files, "split": "train", }, ) ] def _generate_examples(self, filepaths, split): id_ = 0 for filepath in filepaths: with gzip.open(open(filepath, "rb"), "rt", encoding="utf-8") as f: for line in f: if line: example = json.loads(line) yield id_, example id_ += 1