Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
csv
Sub-tasks:
multi-class-classification
Languages:
English
Size:
10K - 100K
License:
File size: 1,390 Bytes
93d1229 adf47f6 93d1229 adf47f6 93d1229 7b90601 f6fa694 fd393d3 b02e6b2 fea26c8 b02e6b2 fea26c8 8c58265 fea26c8 7b90601 705db8b fd393d3 b02e6b2 fd393d3 8f93956 3a704bf 2acf1b9 f99c2c5 66d0583 7b90601 be2abc0 ce0a082 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
---
annotations_creators:
- other
language:
- en
language_creators:
- other
license:
- mit
multilinguality:
- monolingual
pretty_name: twitter financial news
size_categories:
- 10K<n<100K
source_datasets:
- original
tags:
- twitter
- finance
- markets
- stocks
- wallstreet
- quant
- hedgefunds
- markets
task_categories:
- text-classification
task_ids:
- multi-class-classification
---
### Dataset Description
The Twitter Financial News dataset is an English-language dataset containing an annotated corpus of finance-related tweets. This dataset is used to classify finance-related tweets for their sentiment.
1. The dataset holds 11,932 documents annotated with 3 labels:
```python
sentiments = {
"LABEL_0": "Bearish",
"LABEL_1": "Bullish",
"LABEL_2": "Neutral"
}
```
The data was collected using the Twitter API. The current dataset supports the multi-class classification task.
### Task: Sentiment Analysis
# Data Splits
There are 2 splits: train and validation. Below are the statistics:
| Dataset Split | Number of Instances in Split |
| ------------- | ------------------------------------------- |
| Train | 9,938 |
| Validation | 2,486 |
# Licensing Information
The Twitter Financial Dataset (sentiment) version 1.0.0 is released under the MIT License. |