File size: 1,390 Bytes
93d1229
adf47f6
 
 
93d1229
adf47f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93d1229
7b90601
f6fa694
fd393d3
b02e6b2
fea26c8
b02e6b2
fea26c8
 
 
8c58265
 
 
 
fea26c8
7b90601
705db8b
fd393d3
b02e6b2
fd393d3
8f93956
3a704bf
2acf1b9
f99c2c5
 
66d0583
 
7b90601
 
be2abc0
ce0a082
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
---
annotations_creators:
- other
language:
- en
language_creators:
- other
license:
- mit
multilinguality:
- monolingual
pretty_name: twitter financial news
size_categories:
- 10K<n<100K
source_datasets:
- original
tags:
- twitter
- finance
- markets
- stocks
- wallstreet
- quant
- hedgefunds
- markets
task_categories:
- text-classification
task_ids:
- multi-class-classification
---

### Dataset Description

The Twitter Financial News dataset is an English-language dataset containing an annotated corpus of finance-related tweets. This dataset is used to classify finance-related tweets for their sentiment.

1. The dataset holds 11,932 documents annotated with 3 labels:

```python
sentiments = {
    "LABEL_0": "Bearish", 
    "LABEL_1": "Bullish", 
    "LABEL_2": "Neutral"
}  
```

The data was collected using the Twitter API. The current dataset supports the multi-class classification task.

### Task: Sentiment Analysis

# Data Splits
There are 2 splits: train and validation. Below are the statistics:

| Dataset Split | Number of Instances in Split                |
| ------------- | ------------------------------------------- |
| Train         | 9,938                                       |
| Validation    | 2,486                                       |


# Licensing Information
The Twitter Financial Dataset (sentiment) version 1.0.0 is released under the MIT License.