|
from typing import Dict, List, Any |
|
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig |
|
from PIL import Image |
|
import requests |
|
import torch |
|
import gc |
|
import base64 |
|
import io |
|
|
|
class EndpointHandler: |
|
def __init__(self, path=""): |
|
self.processor = AutoProcessor.from_pretrained( |
|
path, |
|
trust_remote_code=True, |
|
torch_dtype=torch.bfloat16, |
|
device_map='auto' |
|
) |
|
self.model = AutoModelForCausalLM.from_pretrained( |
|
path, |
|
trust_remote_code=True, |
|
torch_dtype=torch.bfloat16, |
|
device_map='auto', |
|
low_cpu_mem_usage=True |
|
) |
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
torch.cuda.empty_cache() |
|
gc.collect() |
|
|
|
inputs = data.get("inputs", {}) |
|
image_url = inputs.get("image_url") |
|
image_data = inputs.get("image") |
|
text_prompt = inputs.get("text_prompt", "Describe this image.") |
|
|
|
if image_url: |
|
try: |
|
image = Image.open(requests.get(image_url, stream=True).raw) |
|
except Exception as e: |
|
return [{"error": f"Failed to load image from URL: {str(e)}"}] |
|
elif image_data: |
|
try: |
|
image = Image.open(io.BytesIO(base64.b64decode(image_data))) |
|
except Exception as e: |
|
return [{"error": f"Failed to decode image data: {str(e)}"}] |
|
else: |
|
return [{"error": "No image_url or image data provided in inputs"}] |
|
|
|
if image.mode != "RGB": |
|
image = image.convert("RGB") |
|
|
|
try: |
|
with torch.cuda.amp.autocast(enabled=True, dtype=torch.bfloat16): |
|
inputs = self.processor.process( |
|
images=[image], |
|
text=text_prompt |
|
) |
|
|
|
inputs = {k: v.to(self.model.device).unsqueeze(0) for k, v in inputs.items()} |
|
|
|
output = self.model.generate_from_batch( |
|
inputs, |
|
GenerationConfig(max_new_tokens=200, stop_strings="<|endoftext|>"), |
|
tokenizer=self.processor.tokenizer |
|
) |
|
|
|
generated_tokens = output[0, inputs['input_ids'].size(1):] |
|
generated_text = self.processor.tokenizer.decode(generated_tokens, skip_special_tokens=True) |
|
|
|
torch.cuda.empty_cache() |
|
gc.collect() |
|
|
|
return [{"generated_text": generated_text}] |
|
except Exception as e: |
|
return [{"error": f"Error during generation: {str(e)}"}] |