--- tags: - autotrain - text-classification language: - en widget: - text: "a favourite dutch salad in the way some prime kippered herrings a dn d haddock or some fine yarmouth bloaters then when cold remove all the bones and skin aryl tear the flesh into shreds with two forks sea en these well with pepper salad oil and tarragea vinegar and set aside in a cool place until required cut up into small dice myrtle boil beetroot and potatoes raw cucumber and onions and mix well together with the fish and sonto wellmade tartar sauce then pile up the whols on a flat dish sprinkle well with a mixture of finelychopped parsley and sifted egg yolk garnish round the base with anchovy or saniino crodtons tastefully ornamented with tiny patches or chopped parsley and strips of hardboiled white of egg and servo" datasets: - davanstrien/autotrain-data-recipes co2_eq_emissions: emissions: 6.990639915807625 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 2451975973 - CO2 Emissions (in grams): 6.9906 ## Validation Metrics - Loss: 0.046 - Accuracy: 0.989 - Macro F1: 0.936 - Micro F1: 0.989 - Weighted F1: 0.989 - Macro Precision: 0.929 - Micro Precision: 0.989 - Weighted Precision: 0.989 - Macro Recall: 0.943 - Micro Recall: 0.989 - Weighted Recall: 0.989 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/davanstrien/autotrain-recipes-2451975973 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("davanstrien/autotrain-recipes-2451975973", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("davanstrien/autotrain-recipes-2451975973", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```