File size: 2,265 Bytes
8c94699 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- aesdd
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-AESDD
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: aesdd
type: aesdd
config: AESDD
split: train
args: AESDD
metrics:
- name: Accuracy
type: accuracy
value: 0.9016393442622951
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilhubert-finetuned-AESDD
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the aesdd dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4389
- Accuracy: 0.9016
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.1249 | 1.0 | 68 | 1.1905 | 0.5082 |
| 0.7441 | 2.0 | 136 | 0.8850 | 0.6721 |
| 0.5941 | 3.0 | 204 | 0.6579 | 0.8361 |
| 0.4349 | 4.0 | 272 | 0.9638 | 0.6721 |
| 0.2612 | 5.0 | 340 | 0.5081 | 0.8689 |
| 0.1883 | 6.0 | 408 | 0.6223 | 0.8197 |
| 0.0978 | 7.0 | 476 | 0.4671 | 0.8689 |
| 0.0425 | 8.0 | 544 | 0.4338 | 0.8852 |
| 0.0264 | 9.0 | 612 | 0.4488 | 0.8525 |
| 0.0219 | 10.0 | 680 | 0.4389 | 0.9016 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.2
- Tokenizers 0.13.3
|