File size: 3,901 Bytes
c521604
 
 
a80586e
 
c521604
 
 
4d8b7c6
c521604
 
 
 
 
 
 
 
 
 
a80586e
c521604
a80586e
 
c521604
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3958293
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c521604
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
---
license: apache-2.0
tags:
- image-classification
- vision
- generated_from_trainer
metrics:
- f1
base_model: google/vit-base-patch32-224-in21k
model-index:
- name: vit-base-patch32-224-in21-leicester_binary
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vit-base-patch32-224-in21-leicester_binary

This model is a fine-tuned version of [google/vit-base-patch32-224-in21k](https://huggingface.co/google/vit-base-patch32-224-in21k) on the davanstrien/leicester_loaded_annotations_binary dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0628
- F1: 0.9873

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 128
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 40.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log        | 1.0   | 7    | 0.4529          | 0.8608 |
| 0.5024        | 2.0   | 14   | 0.3989          | 0.8608 |
| 0.3533        | 3.0   | 21   | 0.3741          | 0.8608 |
| 0.3533        | 4.0   | 28   | 0.3161          | 0.8608 |
| 0.285         | 5.0   | 35   | 0.2824          | 0.8608 |
| 0.2491        | 6.0   | 42   | 0.2701          | 0.8608 |
| 0.2491        | 7.0   | 49   | 0.2062          | 0.9114 |
| 0.2032        | 8.0   | 56   | 0.2050          | 0.9494 |
| 0.157         | 9.0   | 63   | 0.2013          | 0.9494 |
| 0.1127        | 10.0  | 70   | 0.1960          | 0.9367 |
| 0.1127        | 11.0  | 77   | 0.1417          | 0.9494 |
| 0.0903        | 12.0  | 84   | 0.1307          | 0.9494 |
| 0.0922        | 13.0  | 91   | 0.0870          | 0.9873 |
| 0.0922        | 14.0  | 98   | 0.2048          | 0.9241 |
| 0.0595        | 15.0  | 105  | 0.1204          | 0.9620 |
| 0.0527        | 16.0  | 112  | 0.2553          | 0.9367 |
| 0.0527        | 17.0  | 119  | 0.1675          | 0.9367 |
| 0.0477        | 18.0  | 126  | 0.2265          | 0.9241 |
| 0.0411        | 19.0  | 133  | 0.1901          | 0.9367 |
| 0.0299        | 20.0  | 140  | 0.2423          | 0.9241 |
| 0.0299        | 21.0  | 147  | 0.0639          | 0.9873 |
| 0.0487        | 22.0  | 154  | 0.1255          | 0.9494 |
| 0.0359        | 23.0  | 161  | 0.1213          | 0.9494 |
| 0.0359        | 24.0  | 168  | 0.0727          | 0.9747 |
| 0.0302        | 25.0  | 175  | 0.1116          | 0.9494 |
| 0.0304        | 26.0  | 182  | 0.1062          | 0.9494 |
| 0.0304        | 27.0  | 189  | 0.2097          | 0.9241 |
| 0.0274        | 28.0  | 196  | 0.1276          | 0.9494 |
| 0.0291        | 29.0  | 203  | 0.0967          | 0.9494 |
| 0.0202        | 30.0  | 210  | 0.0765          | 0.9747 |
| 0.0202        | 31.0  | 217  | 0.0628          | 0.9873 |
| 0.0232        | 32.0  | 224  | 0.1388          | 0.9494 |
| 0.0264        | 33.0  | 231  | 0.1062          | 0.9494 |
| 0.0264        | 34.0  | 238  | 0.1320          | 0.9494 |
| 0.0219        | 35.0  | 245  | 0.1528          | 0.9494 |
| 0.0194        | 36.0  | 252  | 0.1746          | 0.9494 |
| 0.0194        | 37.0  | 259  | 0.1609          | 0.9494 |
| 0.0204        | 38.0  | 266  | 0.1482          | 0.9494 |
| 0.0217        | 39.0  | 273  | 0.1522          | 0.9494 |
| 0.0216        | 40.0  | 280  | 0.1499          | 0.9494 |


### Framework versions

- Transformers 4.26.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.7.1
- Tokenizers 0.13.2