--- license: apache-2.0 tags: - image-classification - vision - generated_from_trainer metrics: - f1 model-index: - name: vit-base-patch32-224-in21-leicester_binary results: [] --- # vit-base-patch32-224-in21-leicester_binary This model is a fine-tuned version of [google/vit-base-patch32-224-in21k](https://huggingface.co/google/vit-base-patch32-224-in21k) on the davanstrien/leicester_loaded_annotations_binary dataset. It achieves the following results on the evaluation set: - Loss: 0.0949 - F1: 0.9747 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 128 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 7 | 0.4576 | 0.8608 | | 0.5021 | 2.0 | 14 | 0.3953 | 0.8608 | | 0.3595 | 3.0 | 21 | 0.3809 | 0.8608 | | 0.3595 | 4.0 | 28 | 0.3286 | 0.8608 | | 0.3009 | 5.0 | 35 | 0.2945 | 0.8608 | | 0.2843 | 6.0 | 42 | 0.3528 | 0.8608 | | 0.2843 | 7.0 | 49 | 0.2345 | 0.8608 | | 0.266 | 8.0 | 56 | 0.2499 | 0.8608 | | 0.222 | 9.0 | 63 | 0.2544 | 0.8608 | | 0.2018 | 10.0 | 70 | 0.1954 | 0.8608 | | 0.2018 | 11.0 | 77 | 0.2351 | 0.8608 | | 0.1948 | 12.0 | 84 | 0.1705 | 0.8608 | | 0.2053 | 13.0 | 91 | 0.1625 | 0.8734 | | 0.2053 | 14.0 | 98 | 0.1719 | 0.9367 | | 0.1729 | 15.0 | 105 | 0.1489 | 0.9367 | | 0.1535 | 16.0 | 112 | 0.1450 | 0.9494 | | 0.1535 | 17.0 | 119 | 0.1750 | 0.9494 | | 0.1492 | 18.0 | 126 | 0.1514 | 0.9494 | | 0.1349 | 19.0 | 133 | 0.1304 | 0.9620 | | 0.1538 | 20.0 | 140 | 0.1291 | 0.9620 | | 0.1538 | 21.0 | 147 | 0.1306 | 0.9620 | | 0.1357 | 22.0 | 154 | 0.1283 | 0.9620 | | 0.147 | 23.0 | 161 | 0.1289 | 0.9494 | | 0.147 | 24.0 | 168 | 0.1339 | 0.9747 | | 0.1388 | 25.0 | 175 | 0.1244 | 0.9494 | | 0.1192 | 26.0 | 182 | 0.1117 | 0.9747 | | 0.1192 | 27.0 | 189 | 0.1105 | 0.9873 | | 0.112 | 28.0 | 196 | 0.1079 | 0.9747 | | 0.1215 | 29.0 | 203 | 0.1151 | 0.9620 | | 0.1139 | 30.0 | 210 | 0.1008 | 0.9873 | | 0.1139 | 31.0 | 217 | 0.1033 | 0.9747 | | 0.1164 | 32.0 | 224 | 0.0985 | 0.9873 | | 0.1192 | 33.0 | 231 | 0.0955 | 0.9873 | | 0.1192 | 34.0 | 238 | 0.1077 | 0.9620 | | 0.1132 | 35.0 | 245 | 0.1107 | 0.9620 | | 0.1021 | 36.0 | 252 | 0.0958 | 0.9873 | | 0.1021 | 37.0 | 259 | 0.0957 | 0.9873 | | 0.0945 | 38.0 | 266 | 0.0951 | 0.9747 | | 0.1244 | 39.0 | 273 | 0.0949 | 0.9747 | | 0.1012 | 40.0 | 280 | 0.0955 | 0.9873 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2