|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" LTG-BERT configutation """ |
|
|
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
|
|
|
|
LTG_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP = { |
|
"bnc-bert-span": "https://huggingface.co/ltg/bnc-bert-span", |
|
"bnc-bert-span-2x": "https://huggingface.co/ltg/bnc-bert-span-2x", |
|
"bnc-bert-span-0.5x": "https://huggingface.co/ltg/bnc-bert-span-0.5x", |
|
"bnc-bert-span-0.25x": "https://huggingface.co/ltg/bnc-bert-span-0.25x", |
|
"bnc-bert-span-order": "https://huggingface.co/ltg/bnc-bert-span-order", |
|
"bnc-bert-span-document": "https://huggingface.co/ltg/bnc-bert-span-document", |
|
"bnc-bert-span-word": "https://huggingface.co/ltg/bnc-bert-span-word", |
|
"bnc-bert-span-subword": "https://huggingface.co/ltg/bnc-bert-span-subword", |
|
|
|
"norbert3-xs": "https://huggingface.co/ltg/norbert3-xs/config.json", |
|
"norbert3-small": "https://huggingface.co/ltg/norbert3-small/config.json", |
|
"norbert3-base": "https://huggingface.co/ltg/norbert3-base/config.json", |
|
"norbert3-large": "https://huggingface.co/ltg/norbert3-large/config.json", |
|
|
|
"norbert3-oversampled-base": "https://huggingface.co/ltg/norbert3-oversampled-base/config.json", |
|
"norbert3-ncc-base": "https://huggingface.co/ltg/norbert3-ncc-base/config.json", |
|
"norbert3-nak-base": "https://huggingface.co/ltg/norbert3-nak-base/config.json", |
|
"norbert3-nb-base": "https://huggingface.co/ltg/norbert3-nb-base/config.json", |
|
"norbert3-wiki-base": "https://huggingface.co/ltg/norbert3-wiki-base/config.json", |
|
"norbert3-c4-base": "https://huggingface.co/ltg/norbert3-c4-base/config.json" |
|
} |
|
|
|
|
|
class LtgBertConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`LtgBertModel`]. It is used to |
|
instantiate an LTG-BERT model according to the specified arguments, defining the model architecture. |
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 16384): |
|
Vocabulary size of the LTG-BERT model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`LtgBertModel`]. |
|
hidden_size (`int`, *optional*, defaults to 768): |
|
Dimensionality of the encoder layers and the pooler layer. |
|
num_hidden_layers (`int`, *optional*, defaults to 12): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 12): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
intermediate_size (`int`, *optional*, defaults to 2048): |
|
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. |
|
hidden_dropout_prob (`float`, *optional*, defaults to 0.1): |
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. |
|
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): |
|
The dropout ratio for the attention probabilities. |
|
max_position_embeddings (`int`, *optional*, defaults to 512): |
|
The maximum sequence length that this model might ever be used with. Typically set this to something large |
|
just in case (e.g., 512 or 1024 or 2048). |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-12): |
|
The epsilon used by the layer normalization layers. |
|
classifier_dropout (`float`, *optional*): |
|
The dropout ratio for the classification head. |
|
""" |
|
model_type = "ltgbert" |
|
def __init__( |
|
self, |
|
vocab_size=16384, |
|
attention_probs_dropout_prob=0.1, |
|
hidden_dropout_prob=0.1, |
|
hidden_size=768, |
|
intermediate_size=2048, |
|
max_position_embeddings=512, |
|
position_bucket_size=32, |
|
num_attention_heads=12, |
|
num_hidden_layers=12, |
|
layer_norm_eps=1.0e-7, |
|
pad_token_id=4, |
|
output_all_encoded_layers=True, |
|
classifier_dropout=None, |
|
**kwargs, |
|
): |
|
super().__init__(pad_token_id=pad_token_id, **kwargs) |
|
|
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.intermediate_size = intermediate_size |
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob |
|
self.max_position_embeddings = max_position_embeddings |
|
self.output_all_encoded_layers = output_all_encoded_layers |
|
self.position_bucket_size = position_bucket_size |
|
self.layer_norm_eps = layer_norm_eps |
|
self.classifier_dropout = classifier_dropout |
|
|