--- license: mit base_model: davelotito/donut-base-sroie-test tags: - generated_from_trainer datasets: - imagefolder metrics: - bleu - wer model-index: - name: donut-base-sroie-test results: [] --- # donut-base-sroie-test This model is a fine-tuned version of [davelotito/donut-base-sroie-test](https://huggingface.co/davelotito/donut-base-sroie-test) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3913 - Bleu: 0.0706 - Precisions: [0.8125, 0.7440860215053764, 0.7064676616915423, 0.6637168141592921] - Brevity Penalty: 0.0968 - Length Ratio: 0.2998 - Translation Length: 528 - Reference Length: 1761 - Cer: 0.7448 - Wer: 0.8259 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Precisions | Brevity Penalty | Length Ratio | Translation Length | Reference Length | Cer | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------------------------------------------------------------------------------:|:---------------:|:------------:|:------------------:|:----------------:|:------:|:------:| | No log | 0.99 | 62 | 0.5515 | 0.0638 | [0.7647058823529411, 0.6831896551724138, 0.6309226932668329, 0.5857988165680473] | 0.0962 | 0.2993 | 527 | 1761 | 0.7627 | 0.8549 | | 0.5624 | 2.0 | 125 | 0.4773 | 0.0665 | [0.7763157894736842, 0.6865671641791045, 0.6403940886699507, 0.5918367346938775] | 0.0992 | 0.3021 | 532 | 1761 | 0.7562 | 0.8390 | | 0.5624 | 2.99 | 187 | 0.4273 | 0.0658 | [0.7840909090909091, 0.6903225806451613, 0.6517412935323383, 0.6047197640117994] | 0.0968 | 0.2998 | 528 | 1761 | 0.7513 | 0.8373 | | 0.2964 | 4.0 | 250 | 0.4007 | 0.0679 | [0.800376647834275, 0.7072649572649573, 0.6592592592592592, 0.6023391812865497] | 0.0986 | 0.3015 | 531 | 1761 | 0.7478 | 0.8286 | | 0.2238 | 4.99 | 312 | 0.3965 | 0.0710 | [0.8142589118198874, 0.7297872340425532, 0.683046683046683, 0.6308139534883721] | 0.0999 | 0.3027 | 533 | 1761 | 0.7427 | 0.8271 | | 0.2238 | 6.0 | 375 | 0.3939 | 0.0719 | [0.8301886792452831, 0.7537473233404711, 0.7054455445544554, 0.656891495601173] | 0.0980 | 0.3010 | 530 | 1761 | 0.7414 | 0.8246 | | 0.147 | 6.99 | 437 | 0.3853 | 0.0693 | [0.8159392789373814, 0.7370689655172413, 0.6932668329177057, 0.6449704142011834] | 0.0962 | 0.2993 | 527 | 1761 | 0.7437 | 0.8237 | | 0.1316 | 8.0 | 500 | 0.3827 | 0.0698 | [0.8037735849056604, 0.7301927194860813, 0.6856435643564357, 0.6392961876832844] | 0.0980 | 0.3010 | 530 | 1761 | 0.7456 | 0.8296 | | 0.1316 | 8.99 | 562 | 0.3895 | 0.0704 | [0.8174904942965779, 0.7516198704103672, 0.715, 0.6706231454005934] | 0.0956 | 0.2987 | 526 | 1761 | 0.7439 | 0.8259 | | 0.1153 | 9.92 | 620 | 0.3913 | 0.0706 | [0.8125, 0.7440860215053764, 0.7064676616915423, 0.6637168141592921] | 0.0968 | 0.2998 | 528 | 1761 | 0.7448 | 0.8259 | ### Framework versions - Transformers 4.40.0.dev0 - Pytorch 2.1.0 - Datasets 2.18.0 - Tokenizers 0.15.2