--- library_name: transformers license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-tiny-fo-100h-5k-steps_v2 results: [] --- # whisper-tiny-fo-100h-5k-steps_v2 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4496 - Wer: 71.2805 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.7688 | 0.2320 | 1000 | 0.7930 | 93.5524 | | 0.5536 | 0.4640 | 2000 | 0.5865 | 77.9042 | | 0.4716 | 0.6961 | 3000 | 0.5056 | 76.4043 | | 0.4447 | 0.9281 | 4000 | 0.4647 | 72.0958 | | 0.3585 | 1.1601 | 5000 | 0.4496 | 71.2805 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1