{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7947cad66a80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1711613937328788463, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAH1DhL68lhI/8lRBPSb9sL4Wax69IxXzPQAAAAAAAAAATdQJvbsZzD0/7sO96bs5vlojtL1QpKi9AAAAAAAAAADW04m+44YHP246ZT5OsY2+JwMTvRuqc7wAAAAAAAAAAJpMzrwf6N8+qwZIvAFthb7+3oK9s1mWvAAAAAAAAAAAEwQbvnOX8T6u45s9Ix2EvuF8mb338iS9AAAAAAAAAADN3Oo8JI6bPo4JPL75kIS+aN7Jvdvd1DwAAAAAAAAAAJrBMbv2JBu6UC6KsxGjai+iR5m6bkjEMwAAgD8AAIA/TTv6PSdEMD/8NL+9FLO0vlZOiT0agha+AAAAAAAAAAAAVCq97M2Uu0KoB7si+LI8eokAvdDtlj0AAIA/AACAPwB3Nz1IOYS6TXwmtB6+fK3L/Rk75Rq2MwAAgD8AAIA/wI40PvaMdrwGENO6xwYJOXq27L31CAs6AACAPwAAgD/NtOm7rqeNun4FvbYr9LyxF7AAO8hW2zUAAIA/AACAPwC9p72R5AA/4tJxu1Kepb7qB1y7tzsXvQAAAAAAAAAAZrbCvAWe8Twa+268+jA6vmiNjL0Yih+9AAAAAAAAAADmkXW9cQMWu+ebAT3bUxQ8mXVGvOXeBD0AAIA/AACAP5qlTTzt2gE+xIYgPvkNWb4NJIY9/ZXMOgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVOAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHKgAIMSbpiMAWyUTQYBjAF0lEdAm39J7kXDWXV9lChoBkdAcPQ6+FlCkWgHTfgBaAhHQJuDywcHWz51fZQoaAZHQG+DI7V8Ti9oB00jAWgIR0CbhO5FgDzRdX2UKGgGR0Bw77pr1uiwaAdNGQFoCEdAm4VJ/oaDPHV9lChoBkdAcbsy1uzhP2gHTUIBaAhHQJuFZvIfbK11fZQoaAZHQHBA2QGOdXloB00hAWgIR0CbhitDD0lJdX2UKGgGR0Bx8Bb6guh9aAdL8mgIR0Cbh99XcQAddX2UKGgGR0Btyfh0hePaaAdNJQFoCEdAm4gbrTpgTnV9lChoBkdAcWfEvTPSlWgHTWcBaAhHQJuINUp/gBN1fZQoaAZHQHG+SfUWl/JoB00uAWgIR0CbiJSxZ+x4dX2UKGgGR0Byth0NjLB9aAdL/WgIR0CbiTp4rz5HdX2UKGgGR0BwChWfbsWwaAdN0AFoCEdAm4nuXE61cHV9lChoBkdAcfkzZHuqm2gHTVkBaAhHQJuKsaHbh3t1fZQoaAZHQG5Lzz/ZM+NoB00LAWgIR0CbizcfNiYtdX2UKGgGR0BwQHLkjopyaAdNCAFoCEdAm4s6kuYhMnV9lChoBkdAYNV5ylvZRWgHTegDaAhHQJuLhMcp9Z11fZQoaAZHQHDmX0XgtOFoB00VAWgIR0Cbi58kUsWgdX2UKGgGR0BPC4SQHRkVaAdL3GgIR0CbjFE/jbSJdX2UKGgGR0BvrNyq+8GtaAdNHgFoCEdAm492jwhGIHV9lChoBkdAca3PQfIS12gHTTABaAhHQJuP7G1hLGt1fZQoaAZHQG6G1S4vvjRoB00xAWgIR0CbkQJaJQ+EdX2UKGgGR0BwrRuIhyKfaAdNTQFoCEdAm5FZUtI07HV9lChoBkdAcFQ4YaYNRWgHTSABaAhHQJuSC+AVfu11fZQoaAZHQHGUoatLcsVoB00PAWgIR0Cbksthd+ocdX2UKGgGR0BwzWlN1yNoaAdNMQFoCEdAm5LuVX3g1nV9lChoBkdAbyPnmq5sj2gHTTcBaAhHQJuTPu7YkE91fZQoaAZHQG2ujPWxyGVoB01CAWgIR0Cbk/6cy31BdX2UKGgGR0Bvxi1Z1V5saAdNHwFoCEdAm5Qb8m8dxXV9lChoBkdAbkIAzYVZcWgHTRcBaAhHQJuVqDrZ8KJ1fZQoaAZHQHNTcNH6MzdoB00EAWgIR0Cblfftx+8XdX2UKGgGR0BwYEQSSNfgaAdNOAFoCEdAm5ZZBPbfxnV9lChoBkdAciNNhmXgL2gHTT8BaAhHQJuWkKgIyCZ1fZQoaAZHQHDVJ8jRlYloB01DAWgIR0CblvWattALdX2UKGgGR0Bxtj2YfGMoaAdNZgFoCEdAm5c/DgqEvnV9lChoBkdAcgY6reZXuGgHTSUBaAhHQJuZv0cwQDp1fZQoaAZHQHI7iI1tO21oB00iAWgIR0Cbmf5R0lqrdX2UKGgGR0Bw6zxZuAI6aAdNBgFoCEdAm5rWtlqagHV9lChoBkdAczyB55Z8r2gHTTMBaAhHQJubnUAksz51fZQoaAZHQHCtk/OdGy5oB00vAWgIR0Cbm8DFqBVddX2UKGgGR0BuwHCTEBKdaAdNCwFoCEdAm5vlFlTWG3V9lChoBkdAcEMQpWmxdWgHTQ8BaAhHQJucVZX+2mZ1fZQoaAZHQHDK2tp22XtoB00UAWgIR0CbnUAIIF/ydX2UKGgGR0Bw0TeuV5bAaAdNPwFoCEdAm52LIT4+KXV9lChoBkdAcX+vVmSQo2gHTQcBaAhHQJue+TW5H3F1fZQoaAZHQHIkVFc6eXloB00VAWgIR0Cbnw5d4VyndX2UKGgGR0Bu14vnKW9laAdNCQFoCEdAm59DwlSjxnV9lChoBkdAcb7aPS2H+WgHTQ0BaAhHQJugERHww0x1fZQoaAZHQHHSjNUwSJ1oB00/AWgIR0CboBZWJaaDdX2UKGgGR0BxUqm/FirlaAdNOQFoCEdAm7duivgWJ3V9lChoBkdAcLNvH93r2WgHTb4BaAhHQJu5FBJI1+B1fZQoaAZHQHAOBaTwDvFoB00XAWgIR0CbuV9YwIt2dX2UKGgGR0Bx9Usd1dPdaAdL/2gIR0Cbup+4b0e2dX2UKGgGR0BxdhKTSsr/aAdNBQFoCEdAm7q5osZpBXV9lChoBkdAcMX17Y02tWgHTTEBaAhHQJu7eLzf7791fZQoaAZHQHB+CSzPa+NoB00LAWgIR0Cbu4hS9/SZdX2UKGgGR0BuZS2x6fJ4aAdNTQFoCEdAm7uek56t1nV9lChoBkdAcl3/iHZbp2gHTTQBaAhHQJu8KLaVUuN1fZQoaAZHQG/DTsQd0aJoB00aAWgIR0CbvMIp6QeWdX2UKGgGR0BCAfqxC6YmaAdLzmgIR0CbvkFgUlAvdX2UKGgGR0Burmq94/u9aAdNEgFoCEdAm76AUlAu7HV9lChoBkdAci+X7cfvF2gHTRsBaAhHQJu+kh5gPVd1fZQoaAZHQHBLN2s7uD1oB01VAWgIR0CbvuYwqRU4dX2UKGgGR0Bymm4G2TgVaAdNBgFoCEdAm77trKvFFXV9lChoBkdAcWIvCuU2UGgHTTUBaAhHQJvANfE4vOB1fZQoaAZHQEWyDEFW4mVoB0vIaAhHQJvAtN+LFXJ1fZQoaAZHQHHtlXV9Wp9oB00LAWgIR0CbwXEaVD8cdX2UKGgGR0Byr2SwGGEgaAdNmQFoCEdAm8IfsRg7YHV9lChoBkdAbocmNzbN8mgHS/9oCEdAm8Nj/Q0GeXV9lChoBkdAcNXJtzjm0WgHTSQBaAhHQJvEkIHC4z91fZQoaAZHQHC+HpGFzuFoB01NAWgIR0CbxVz0HyEtdX2UKGgGR0BvLFLi++M7aAdNIwFoCEdAm8VkCV8kU3V9lChoBkdAbnOJHAh0Q2gHTRUBaAhHQJvFkgX/HYJ1fZQoaAZHQHM9rPD50r9oB01EAWgIR0CbxcicoYvWdX2UKGgGR0BKbKiGnGbTaAdL4mgIR0CbxdBt1p0wdX2UKGgGR0Buc0cZLqUvaAdL+mgIR0Cbxvjfek57dX2UKGgGR0BwiOtEG7jDaAdNEQFoCEdAm8c504iosXV9lChoBkdAcNrqxTsIFGgHTTEBaAhHQJvIA55qubJ1fZQoaAZHQG82UvGp++doB0v8aAhHQJvIeI68xsV1fZQoaAZHQHCqD8HfMwFoB00zAWgIR0CbyLHGCI1tdX2UKGgGR0ByPoa99MK1aAdNDQJoCEdAm8opBLPD53V9lChoBkdAcoFTqjafz2gHTSgBaAhHQJvLGGrS3LF1fZQoaAZHQHKKjCcf/3poB01EAWgIR0CbyzKqn3tbdX2UKGgGR0BxROK1og3caAdNIgFoCEdAm8uZf6XSjXV9lChoBkdAbyx8P4EfT2gHTRMBaAhHQJvMQpUgjhV1fZQoaAZHQHN6vTXrdFhoB00FAWgIR0Cbzf62v0ROdX2UKGgGR0BwCnU8V58jaAdNFAFoCEdAm84SP2f03HV9lChoBkdAcv1NH6MzdmgHTSkBaAhHQJvOEfSx7iR1fZQoaAZHQHIT1qi48U5oB000AWgIR0Cbz3tga3qidX2UKGgGR0BuUJTER8MNaAdNFAFoCEdAm9A2E4//vXV9lChoBkdAcBRbcGkeqGgHTVEBaAhHQJvQT0VafSR1fZQoaAZHQHDG4ZZSvTxoB01JAWgIR0Cb0bCFbmlqdX2UKGgGR0ByxwuYhMakaAdNKwFoCEdAm9HR0hePaXV9lChoBkdAcJJZTho/RmgHS/xoCEdAm9KbVz6rNnV9lChoBkdAco9bhWHUMGgHTUgBaAhHQJvTRmthd+p1fZQoaAZHQG1FZXuE25xoB01GAWgIR0Cb03V2zOX3dX2UKGgGR0BPxqjzqbBoaAdLt2gIR0Cb1E3s5XEJdX2UKGgGR0BtI/F72L5zaAdNGwFoCEdAm9SwZ0jkdXV9lChoBkdAcxQX+ERJ3GgHTSMBaAhHQJvU3bzshPl1fZQoaAZHQHAEwavRqoJoB00jAWgIR0Cb1VkXUH6edX2UKGgGR0BwnGPMjeKsaAdNFwFoCEdAm9WabKA8S3VlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 264, "observation_space": {":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}