--- library_name: transformers license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - yashtiwari/PaulMooney-Medical-ASR-Data metrics: - wer model-index: - name: Whisper Medium Medical results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Medical ASR type: yashtiwari/PaulMooney-Medical-ASR-Data metrics: - name: Wer type: wer value: 16.02703355056722 --- # Whisper Medium Medical This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Medical ASR dataset. It achieves the following results on the evaluation set: - Loss: 0.0577 - Wer: 16.0270 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.4859 | 0.5405 | 100 | 0.1945 | 15.5926 | | 0.1037 | 1.0811 | 200 | 0.0849 | 12.5754 | | 0.0558 | 1.6216 | 300 | 0.0633 | 17.3787 | | 0.0244 | 2.1622 | 400 | 0.0631 | 13.7581 | | 0.0123 | 2.7027 | 500 | 0.0577 | 16.0270 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0