File size: 9,664 Bytes
62096c7
 
 
 
284d906
3cd8e34
 
e14d20d
3cd8e34
62096c7
 
7a65b67
 
514a9e7
 
7a65b67
 
 
 
 
 
 
 
 
 
514a9e7
 
 
 
 
 
 
 
 
 
 
7a65b67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
514a9e7
 
7a65b67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
514a9e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a65b67
 
 
 
 
 
 
514a9e7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
---
language: multilingual
license: mit
widget:
- text: "and I cannot conceive the reafon why [MASK] hath"
- text: "Täkäläinen sanomalehdistö [MASK] erit - täin"
- text: "Det vore [MASK] häller nödvändigt att be"
- text: "Comme, à cette époque [MASK] était celle de la"
- text: "In [MASK] an atmosphärischen Nahrungsmitteln"
---

# Historic Language Models (HLMs)

## Languages

Our Historic Language Models Zoo contains support for the following languages - incl. their training data source:

| Language | Training data | Size 
| -------- | ------------- | ----
| German   | [Europeana](http://www.europeana-newspapers.eu/)       | 13-28GB (filtered)
| French   | [Europeana](http://www.europeana-newspapers.eu/)       | 11-31GB (filtered)
| English  | [British Library](https://data.bl.uk/digbks/db14.html) | 24GB (year filtered)
| Finnish  | [Europeana](http://www.europeana-newspapers.eu/)       | 1.2GB
| Swedish  | [Europeana](http://www.europeana-newspapers.eu/)       | 1.1GB

## Models

At the moment, the following models are available on the model hub:

| Model identifier                              | Model Hub link
| --------------------------------------------- | --------------------------------------------------------------------------
| `dbmdz/bert-base-historic-multilingual-cased` | [here](https://huggingface.co/dbmdz/bert-base-historic-multilingual-cased)
| `dbmdz/bert-base-historic-english-cased`      | [here](https://huggingface.co/dbmdz/bert-base-historic-english-cased)
| `dbmdz/bert-base-finnish-europeana-cased`     | [here](https://huggingface.co/dbmdz/bert-base-finnish-europeana-cased)
| `dbmdz/bert-base-swedish-europeana-cased`     | [here](https://huggingface.co/dbmdz/bert-base-swedish-europeana-cased)

# Corpora Stats

## German Europeana Corpus

We provide some statistics using different thresholds of ocr confidences, in order to shrink down the corpus size
and use less-noisier data:

| OCR confidence | Size
| -------------- | ----
| **0.60**       | 28GB
| 0.65           | 18GB
| 0.70           | 13GB

For the final corpus we use a OCR confidence of 0.6 (28GB). The following plot shows a tokens per year distribution:

![German Europeana Corpus Stats](stats/figures/german_europeana_corpus_stats.png)

## French Europeana Corpus

Like German, we use different ocr confidence thresholds:

| OCR confidence | Size
| -------------- | ----
| 0.60           | 31GB
| 0.65           | 27GB
| **0.70**       | 27GB
| 0.75           | 23GB
| 0.80           | 11GB

For the final corpus we use a OCR confidence of 0.7 (27GB). The following plot shows a tokens per year distribution:

![French Europeana Corpus Stats](stats/figures/french_europeana_corpus_stats.png)

## British Library Corpus

Metadata is taken from [here](https://data.bl.uk/digbks/DB21.html). Stats incl. year filtering:

| Years             | Size
| ----------------- | ----
| ALL               | 24GB
| >= 1800 && < 1900 | 24GB

We use the year filtered variant. The following plot shows a tokens per year distribution:

![British Library Corpus Stats](stats/figures/bl_corpus_stats.png)

## Finnish Europeana Corpus

| OCR confidence | Size
| -------------- | ----
| 0.60           | 1.2GB

The following plot shows a tokens per year distribution:

![Finnish Europeana Corpus Stats](stats/figures/finnish_europeana_corpus_stats.png)

## Swedish Europeana Corpus

| OCR confidence | Size
| -------------- | ----
| 0.60           | 1.1GB

The following plot shows a tokens per year distribution:

![Swedish Europeana Corpus Stats](stats/figures/swedish_europeana_corpus_stats.png)

## All Corpora

The following plot shows a tokens per year distribution of the complete training corpus:

![All Corpora Stats](stats/figures/all_corpus_stats.png)

# Multilingual Vocab generation

For the first attempt, we use the first 10GB of each pretraining corpus. We upsample both Finnish and Swedish to ~10GB.
The following tables shows the exact size that is used for generating a 32k and 64k subword vocabs:

| Language | Size
| -------- | ----
| German   | 10GB
| French   | 10GB
| English  | 10GB
| Finnish  | 9.5GB
| Swedish  | 9.7GB

We then calculate the subword fertility rate and portion of `[UNK]`s over the following NER corpora:

| Language | NER corpora
| -------- | ------------------
| German   | CLEF-HIPE, NewsEye
| French   | CLEF-HIPE, NewsEye
| English  | CLEF-HIPE
| Finnish  | NewsEye
| Swedish  | NewsEye

Breakdown of subword fertility rate and unknown portion per language for the 32k vocab:

| Language | Subword fertility  | Unknown portion
| -------- | ------------------ | ---------------
| German   | 1.43               | 0.0004
| French   | 1.25               | 0.0001
| English  | 1.25               | 0.0
| Finnish  | 1.69               | 0.0007
| Swedish  | 1.43               | 0.0

Breakdown of subword fertility rate and unknown portion per language for the 64k vocab:

| Language | Subword fertility  | Unknown portion
| -------- | ------------------ | ---------------
| German   | 1.31               | 0.0004
| French   | 1.16               | 0.0001
| English  | 1.17               | 0.0
| Finnish  | 1.54               | 0.0007
| Swedish  | 1.32               | 0.0

# Final pretraining corpora

We upsample Swedish and Finnish to ~27GB. The final stats for all pretraining corpora can be seen here:

| Language | Size
| -------- | ----
| German   | 28GB
| French   | 27GB
| English  | 24GB
| Finnish  | 27GB
| Swedish  | 27GB

Total size is 130GB.

# Pretraining

## Multilingual model

We train a multilingual BERT model using the 32k vocab with the official BERT implementation
on a v3-32 TPU using the following parameters:

```bash
python3 run_pretraining.py --input_file gs://histolectra/historic-multilingual-tfrecords/*.tfrecord \
--output_dir gs://histolectra/bert-base-historic-multilingual-cased \
--bert_config_file ./config.json \
--max_seq_length=512 \
--max_predictions_per_seq=75 \
--do_train=True \
--train_batch_size=128 \
--num_train_steps=3000000 \
--learning_rate=1e-4 \
--save_checkpoints_steps=100000 \
--keep_checkpoint_max=20 \
--use_tpu=True \
--tpu_name=electra-2 \
--num_tpu_cores=32
```

The following plot shows the pretraining loss curve:

![Training loss curve](stats/figures/pretraining_loss_historic-multilingual.png)

## English model

The English BERT model - with texts from British Library corpus - was trained with the Hugging Face
JAX/FLAX implementation for 10 epochs (approx. 1M steps) on a v3-8 TPU, using the following command:

```bash
python3 run_mlm_flax.py --model_type bert \
--config_name /mnt/datasets/bert-base-historic-english-cased/ \
--tokenizer_name /mnt/datasets/bert-base-historic-english-cased/ \
--train_file /mnt/datasets/bl-corpus/bl_1800-1900_extracted.txt \
--validation_file /mnt/datasets/bl-corpus/english_validation.txt \
--max_seq_length 512 \
--per_device_train_batch_size 16 \
--learning_rate 1e-4 \
--num_train_epochs 10 \
--preprocessing_num_workers 96 \
--output_dir /mnt/datasets/bert-base-historic-english-cased-512-noadafactor-10e \
--save_steps 2500 \
--eval_steps 2500 \
--warmup_steps 10000 \
--line_by_line \
--pad_to_max_length
```

The following plot shows the pretraining loss curve:

![Training loss curve](stats/figures/pretraining_loss_historic_english.png)

## Finnish model

The BERT model - with texts from Finnish part of Europeana - was trained with the Hugging Face
JAX/FLAX implementation for 40 epochs (approx. 1M steps) on a v3-8 TPU, using the following command:

```bash
python3 run_mlm_flax.py --model_type bert \
--config_name /mnt/datasets/bert-base-finnish-europeana-cased/ \
--tokenizer_name /mnt/datasets/bert-base-finnish-europeana-cased/ \
--train_file /mnt/datasets/hlms/extracted_content_Finnish_0.6.txt \
--validation_file /mnt/datasets/hlms/finnish_validation.txt \
--max_seq_length 512 \
--per_device_train_batch_size 16 \
--learning_rate 1e-4 \
--num_train_epochs 40 \
--preprocessing_num_workers 96 \
--output_dir /mnt/datasets/bert-base-finnish-europeana-cased-512-dupe1-noadafactor-40e \
--save_steps 2500 \
--eval_steps 2500 \
--warmup_steps 10000 \
--line_by_line \
--pad_to_max_length
```

The following plot shows the pretraining loss curve:

![Training loss curve](stats/figures/pretraining_loss_finnish_europeana.png)

## Swedish model

The BERT model - with texts from Swedish part of Europeana - was trained with the Hugging Face
JAX/FLAX implementation for 40 epochs (approx. 660K steps) on a v3-8 TPU, using the following command:

```bash
python3 run_mlm_flax.py --model_type bert \
--config_name /mnt/datasets/bert-base-swedish-europeana-cased/ \
--tokenizer_name /mnt/datasets/bert-base-swedish-europeana-cased/ \
--train_file /mnt/datasets/hlms/extracted_content_Swedish_0.6.txt \
--validation_file /mnt/datasets/hlms/swedish_validation.txt \
--max_seq_length 512 \
--per_device_train_batch_size 16 \
--learning_rate 1e-4 \
--num_train_epochs 40 \
--preprocessing_num_workers 96 \
--output_dir /mnt/datasets/bert-base-swedish-europeana-cased-512-dupe1-noadafactor-40e \
--save_steps 2500 \
--eval_steps 2500 \
--warmup_steps 10000 \
--line_by_line \
--pad_to_max_length
```

The following plot shows the pretraining loss curve:

![Training loss curve](stats/figures/pretraining_loss_swedish_europeana.png)

# Acknowledgments

Research supported with Cloud TPUs from Google's TPU Research Cloud (TRC) program, previously known as
TensorFlow Research Cloud (TFRC). Many thanks for providing access to the TRC ❤️

Thanks to the generous support from the [Hugging Face](https://huggingface.co/) team,
it is possible to download both cased and uncased models from their S3 storage 🤗