dcduplooy commited on
Commit
0c0ff5d
·
1 Parent(s): 0032c98

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.49 +/- 0.16
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5720c6af1d8bde8c4ee541bfb55f29a50623fbae3e5cacf48f75756fbda7005e
3
+ size 109501
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fe6703425e0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7fe670341bc0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
15
+ "log_std_init": -2,
16
+ "ortho_init": false,
17
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
18
+ "optimizer_kwargs": {
19
+ "alpha": 0.99,
20
+ "eps": 1e-05,
21
+ "weight_decay": 0
22
+ }
23
+ },
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
26
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
27
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
28
+ "_shape": null,
29
+ "dtype": null,
30
+ "_np_random": null
31
+ },
32
+ "action_space": {
33
+ ":type:": "<class 'gym.spaces.box.Box'>",
34
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
35
+ "dtype": "float32",
36
+ "_shape": [
37
+ 3
38
+ ],
39
+ "low": "[-1. -1. -1.]",
40
+ "high": "[1. 1. 1.]",
41
+ "bounded_below": "[ True True True]",
42
+ "bounded_above": "[ True True True]",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 4,
46
+ "num_timesteps": 1000000,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1678399524957117196,
52
+ "learning_rate": 0.00096,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'collections.OrderedDict'>",
60
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAUx+yPlkD9Dwzlws/Ux+yPlkD9Dwzlws/Ux+yPlkD9Dwzlws/Ux+yPlkD9Dwzlws/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAje3OP+wA2D+W2m4+CwSfPjKh6D79/lG+dDeWvzdWTD/NNDI/X4Jvv4QVrT/evLA+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABTH7I+WQP0PDOXCz+U3aA9FNinO2SReD1TH7I+WQP0PDOXCz+U3aA9FNinO2SReD1TH7I+WQP0PDOXCz+U3aA9FNinO2SReD1TH7I+WQP0PDOXCz+U3aA9FNinO2SReD2UaA5LBEsGhpRoEnSUUpR1Lg==",
61
+ "achieved_goal": "[[0.34789523 0.02978675 0.54527587]\n [0.34789523 0.02978675 0.54527587]\n [0.34789523 0.02978675 0.54527587]\n [0.34789523 0.02978675 0.54527587]]",
62
+ "desired_goal": "[[ 1.6166245 1.6875281 0.23325571]\n [ 0.31057772 0.45435482 -0.20507427]\n [-1.1735673 0.79819053 0.6961182 ]\n [-0.93558306 1.3522191 0.34519094]]",
63
+ "observation": "[[0.34789523 0.02978675 0.54527587 0.07854763 0.00512219 0.06068553]\n [0.34789523 0.02978675 0.54527587 0.07854763 0.00512219 0.06068553]\n [0.34789523 0.02978675 0.54527587 0.07854763 0.00512219 0.06068553]\n [0.34789523 0.02978675 0.54527587 0.07854763 0.00512219 0.06068553]]"
64
+ },
65
+ "_last_episode_starts": {
66
+ ":type:": "<class 'numpy.ndarray'>",
67
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
68
+ },
69
+ "_last_original_obs": {
70
+ ":type:": "<class 'collections.OrderedDict'>",
71
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAg6atPOk74zznRus9Ht03PZfQvby4vMw9/1z9vRT/pL3SE4g+bl8vPTsL8j0yEA8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
72
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
73
+ "desired_goal": "[[ 0.02119756 0.02773853 0.11488133]\n [ 0.04488861 -0.02317075 0.09996933]\n [-0.12371253 -0.08056465 0.26577622]\n [ 0.04281562 0.11818548 0.13971022]]",
74
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
75
+ },
76
+ "_episode_num": 0,
77
+ "use_sde": true,
78
+ "sde_sample_freq": -1,
79
+ "_current_progress_remaining": 0.0,
80
+ "ep_info_buffer": {
81
+ ":type:": "<class 'collections.deque'>",
82
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIwHlx4qsd47+UhpRSlIwBbJRLMowBdJRHQKr8c98JD3N1fZQoaAZoCWgPQwhfDVAaalTyv5SGlFKUaBVLMmgWR0Cq/BjCHh0hdX2UKGgGaAloD0MIkKD4Mebu8L+UhpRSlGgVSzJoFkdAqvu/MGHHm3V9lChoBmgJaA9DCDJ3LSEftPO/lIaUUpRoFUsyaBZHQKr7YIZZSvV1fZQoaAZoCWgPQwiCj8GKUy3xv5SGlFKUaBVLMmgWR0Cq/pd1uBMBdX2UKGgGaAloD0MIP3PWpxxT+b+UhpRSlGgVSzJoFkdAqv48h3aBZ3V9lChoBmgJaA9DCAR1yqMb4eS/lIaUUpRoFUsyaBZHQKr94zLOiWV1fZQoaAZoCWgPQwhoQpPEkvLvv5SGlFKUaBVLMmgWR0Cq/YTRIBikdX2UKGgGaAloD0MIdAgcCTTY8L+UhpRSlGgVSzJoFkdAqwCSIJqqO3V9lChoBmgJaA9DCLDG2XQEMPm/lIaUUpRoFUsyaBZHQKsANwqAjIJ1fZQoaAZoCWgPQwiNRdPZyeDmv5SGlFKUaBVLMmgWR0Cq/91lPJq7dX2UKGgGaAloD0MINBDLZg5J6r+UhpRSlGgVSzJoFkdAqv9+kvboKXV9lChoBmgJaA9DCBQjS+ZYnvK/lIaUUpRoFUsyaBZHQKsB88q4H5d1fZQoaAZoCWgPQwhNTYI3pNHpv5SGlFKUaBVLMmgWR0CrAZenhsIndX2UKGgGaAloD0MIhuKON/mt+7+UhpRSlGgVSzJoFkdAqwE9KwpvxnV9lChoBmgJaA9DCDz1SIPbmvC/lIaUUpRoFUsyaBZHQKsA3VVghKV1fZQoaAZoCWgPQwgtI/Weymnev5SGlFKUaBVLMmgWR0CrAx0cwQDndX2UKGgGaAloD0MIlsyxvKse+L+UhpRSlGgVSzJoFkdAqwLBE+gUUXV9lChoBmgJaA9DCGYwRiQK7fW/lIaUUpRoFUsyaBZHQKsCZrkbPyF1fZQoaAZoCWgPQwjOGyeFeQ/vv5SGlFKUaBVLMmgWR0CrAgcZ1mrbdX2UKGgGaAloD0MITKlLxjGS87+UhpRSlGgVSzJoFkdAqwQ9wHZ9NXV9lChoBmgJaA9DCHFWRE30+fO/lIaUUpRoFUsyaBZHQKsD4eWfK6p1fZQoaAZoCWgPQwiERrBx/Tvtv5SGlFKUaBVLMmgWR0CrA4euFHrhdX2UKGgGaAloD0MIFOgTeZJ08b+UhpRSlGgVSzJoFkdAqwMoDs+mnHV9lChoBmgJaA9DCIv5uaEpe/a/lIaUUpRoFUsyaBZHQKsFYNbTtsx1fZQoaAZoCWgPQwh/iXjr/Jvxv5SGlFKUaBVLMmgWR0CrBQTsyBTXdX2UKGgGaAloD0MIUrgehevR47+UhpRSlGgVSzJoFkdAqwSqpPykK3V9lChoBmgJaA9DCNl22hoRjOS/lIaUUpRoFUsyaBZHQKsESzLwF1V1fZQoaAZoCWgPQwhtG0ZB8Lj0v5SGlFKUaBVLMmgWR0CrBnpDmbLEdX2UKGgGaAloD0MItd5vtOOG6L+UhpRSlGgVSzJoFkdAqwYeT/yXlnV9lChoBmgJaA9DCHWsUnqmV/C/lIaUUpRoFUsyaBZHQKsFw9f1Hvt1fZQoaAZoCWgPQwhiTtAmhw/5v5SGlFKUaBVLMmgWR0CrBWQIMSbpdX2UKGgGaAloD0MIf9+/eXFi4L+UhpRSlGgVSzJoFkdAqwedhE0BO3V9lChoBmgJaA9DCPOspBXf0O+/lIaUUpRoFUsyaBZHQKsHQXHim2t1fZQoaAZoCWgPQwiOImsNpXbrv5SGlFKUaBVLMmgWR0CrBucqOLiudX2UKGgGaAloD0MIJv+Tv3tH1b+UhpRSlGgVSzJoFkdAqwaHnZCfH3V9lChoBmgJaA9DCCoeF9UiotW/lIaUUpRoFUsyaBZHQKsIvbvgFX91fZQoaAZoCWgPQwjhfsADA4jwv5SGlFKUaBVLMmgWR0CrCGHXEqDsdX2UKGgGaAloD0MIK/nYXaCk4L+UhpRSlGgVSzJoFkdAqwgHtMPBi3V9lChoBmgJaA9DCKPNcW4Tbvq/lIaUUpRoFUsyaBZHQKsHqD1XeWR1fZQoaAZoCWgPQwiPpnoy/+jZv5SGlFKUaBVLMmgWR0CrCd/KISDidX2UKGgGaAloD0MIX38SnztB5r+UhpRSlGgVSzJoFkdAqwmD238XN3V9lChoBmgJaA9DCFlS7j7Hx+e/lIaUUpRoFUsyaBZHQKsJKXkYGdJ1fZQoaAZoCWgPQwh4f7xXrUzzv5SGlFKUaBVLMmgWR0CrCMnctXgcdX2UKGgGaAloD0MIn62Dg72J1b+UhpRSlGgVSzJoFkdAqwr6PbO/tnV9lChoBmgJaA9DCEM6PITxU+2/lIaUUpRoFUsyaBZHQKsKnmEoOQR1fZQoaAZoCWgPQwioyCHi5pTxv5SGlFKUaBVLMmgWR0CrCkP2wmmcdX2UKGgGaAloD0MISDKrd7id67+UhpRSlGgVSzJoFkdAqwnkYbbUPXV9lChoBmgJaA9DCHB4QURq2vK/lIaUUpRoFUsyaBZHQKsMD75VOsV1fZQoaAZoCWgPQwipM/eQ8L3qv5SGlFKUaBVLMmgWR0CrC7OivgWKdX2UKGgGaAloD0MIe0/ltKfk37+UhpRSlGgVSzJoFkdAqwtZUR3/xXV9lChoBmgJaA9DCMKKU62FWdO/lIaUUpRoFUsyaBZHQKsK+YKIBR11fZQoaAZoCWgPQwinBwWlaGXsv5SGlFKUaBVLMmgWR0CrDTxTjvNNdX2UKGgGaAloD0MID3uhgO3g6L+UhpRSlGgVSzJoFkdAqwzgf4h2XHV9lChoBmgJaA9DCNMSK6ORz9m/lIaUUpRoFUsyaBZHQKsMhj3mFJx1fZQoaAZoCWgPQwj8jAsHQrLXv5SGlFKUaBVLMmgWR0CrDCbCBPKudX2UKGgGaAloD0MIfPKwUGua4r+UhpRSlGgVSzJoFkdAqw5QsunMuHV9lChoBmgJaA9DCChjfJi97O2/lIaUUpRoFUsyaBZHQKsN9JkGzKN1fZQoaAZoCWgPQwg/qmG/J9bXv5SGlFKUaBVLMmgWR0CrDZpA2Q4kdX2UKGgGaAloD0MI0eY4twn327+UhpRSlGgVSzJoFkdAqw06i48U23V9lChoBmgJaA9DCIEhq1s9J+C/lIaUUpRoFUsyaBZHQKsPbAO8TSN1fZQoaAZoCWgPQwgBF2TL8vXsv5SGlFKUaBVLMmgWR0CrDw/ReC04dX2UKGgGaAloD0MIeLgdGhaj2r+UhpRSlGgVSzJoFkdAqw61bor4FnV9lChoBmgJaA9DCN8Vwf9WMuS/lIaUUpRoFUsyaBZHQKsOVeQ+2Vp1fZQoaAZoCWgPQwgT04VY/ZHnv5SGlFKUaBVLMmgWR0CrEJ51eSjhdX2UKGgGaAloD0MImPkOfuKA4L+UhpRSlGgVSzJoFkdAqxBCQo1DSnV9lChoBmgJaA9DCKUSntDrz+m/lIaUUpRoFUsyaBZHQKsP574SHuZ1fZQoaAZoCWgPQwiWr8vwn27Zv5SGlFKUaBVLMmgWR0CrD4gIIF/ydX2UKGgGaAloD0MIujDSi9r927+UhpRSlGgVSzJoFkdAqxHPhqCYkXV9lChoBmgJaA9DCDT4+8Vsydy/lIaUUpRoFUsyaBZHQKsRc8RL9Mt1fZQoaAZoCWgPQwiz0qQUdPvgv5SGlFKUaBVLMmgWR0CrERlq8DjjdX2UKGgGaAloD0MIfZdSl4xj4L+UhpRSlGgVSzJoFkdAqxC5z90ihXV9lChoBmgJaA9DCF1OCYhJuO6/lIaUUpRoFUsyaBZHQKsS8hbnoxJ1fZQoaAZoCWgPQwh2cLA3MaTjv5SGlFKUaBVLMmgWR0CrEpYvnKW+dX2UKGgGaAloD0MIlnoWhPK+47+UhpRSlGgVSzJoFkdAqxI8GJN0vHV9lChoBmgJaA9DCLaBO1CnPNu/lIaUUpRoFUsyaBZHQKsR3IkJKJ51fZQoaAZoCWgPQwjoobYNoyDav5SGlFKUaBVLMmgWR0CrFAaeoUBXdX2UKGgGaAloD0MIcM0d/S/X57+UhpRSlGgVSzJoFkdAqxOqnFYMfHV9lChoBmgJaA9DCJLM6h1uh9i/lIaUUpRoFUsyaBZHQKsTUEFGG211fZQoaAZoCWgPQwjrkJvhBvzpv5SGlFKUaBVLMmgWR0CrEvBmwqy4dX2UKGgGaAloD0MIrcCQ1a0e6r+UhpRSlGgVSzJoFkdAqxUqSJTESHV9lChoBmgJaA9DCLeXNEbrqNm/lIaUUpRoFUsyaBZHQKsUzmDDjzZ1fZQoaAZoCWgPQwj/ImjMJGrov5SGlFKUaBVLMmgWR0CrFHQEZBLPdX2UKGgGaAloD0MIAiocQSrFzr+UhpRSlGgVSzJoFkdAqxQUa2nbZnV9lChoBmgJaA9DCL+bbtkhfuS/lIaUUpRoFUsyaBZHQKsW9ZK3/gl1fZQoaAZoCWgPQwg6PITx07jJv5SGlFKUaBVLMmgWR0CrFppUYKpldX2UKGgGaAloD0MI0gDeAgmK37+UhpRSlGgVSzJoFkdAqxZBNh3JP3V9lChoBmgJaA9DCDeOWItPAde/lIaUUpRoFUsyaBZHQKsV4oxYaHd1fZQoaAZoCWgPQwhwJxHhX4Tiv5SGlFKUaBVLMmgWR0CrGL1Fpfx+dX2UKGgGaAloD0MId4GSAgtg3L+UhpRSlGgVSzJoFkdAqxhiQ1aW5nV9lChoBmgJaA9DCGK85lWdVeG/lIaUUpRoFUsyaBZHQKsYCOOsDGN1fZQoaAZoCWgPQwhKtrqcEpDkv5SGlFKUaBVLMmgWR0CrF6prLyMDdX2UKGgGaAloD0MI2QkvwakPzL+UhpRSlGgVSzJoFkdAqxqSowVTJnV9lChoBmgJaA9DCAN5dvnWh+e/lIaUUpRoFUsyaBZHQKsaN6a9bot1fZQoaAZoCWgPQwjUCz7NyYvfv5SGlFKUaBVLMmgWR0CrGd3/5tWNdX2UKGgGaAloD0MI42w6ArhZ3L+UhpRSlGgVSzJoFkdAqxl/LA57xHV9lChoBmgJaA9DCNoeveE+ct+/lIaUUpRoFUsyaBZHQKscdziCJ411fZQoaAZoCWgPQwgV/aGZJ9fQv5SGlFKUaBVLMmgWR0CrHBvYWcjJdX2UKGgGaAloD0MIm5DWGHRC2L+UhpRSlGgVSzJoFkdAqxvCiGnGbXV9lChoBmgJaA9DCLQiaqLPR9m/lIaUUpRoFUsyaBZHQKsbY14Pf9B1ZS4="
83
+ },
84
+ "ep_success_buffer": {
85
+ ":type:": "<class 'collections.deque'>",
86
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
87
+ },
88
+ "_n_updates": 31250,
89
+ "n_steps": 8,
90
+ "gamma": 0.99,
91
+ "gae_lambda": 0.9,
92
+ "ent_coef": 0.0,
93
+ "vf_coef": 0.4,
94
+ "max_grad_norm": 0.5,
95
+ "normalize_advantage": false
96
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:82ddaeb85025c0bdc8b8d6303bc07d2e2cd9534ff868b2d270dd593d69d0e940
3
+ size 45438
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:deeac1cf6195c38ffe2b6a9fc71ff4601e8e9dd0fdee715cd2e0997d2f588238
3
+ size 46718
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fe6703425e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe670341bc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678399524957117196, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAUx+yPlkD9Dwzlws/Ux+yPlkD9Dwzlws/Ux+yPlkD9Dwzlws/Ux+yPlkD9Dwzlws/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAje3OP+wA2D+W2m4+CwSfPjKh6D79/lG+dDeWvzdWTD/NNDI/X4Jvv4QVrT/evLA+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABTH7I+WQP0PDOXCz+U3aA9FNinO2SReD1TH7I+WQP0PDOXCz+U3aA9FNinO2SReD1TH7I+WQP0PDOXCz+U3aA9FNinO2SReD1TH7I+WQP0PDOXCz+U3aA9FNinO2SReD2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.34789523 0.02978675 0.54527587]\n [0.34789523 0.02978675 0.54527587]\n [0.34789523 0.02978675 0.54527587]\n [0.34789523 0.02978675 0.54527587]]", "desired_goal": "[[ 1.6166245 1.6875281 0.23325571]\n [ 0.31057772 0.45435482 -0.20507427]\n [-1.1735673 0.79819053 0.6961182 ]\n [-0.93558306 1.3522191 0.34519094]]", "observation": "[[0.34789523 0.02978675 0.54527587 0.07854763 0.00512219 0.06068553]\n [0.34789523 0.02978675 0.54527587 0.07854763 0.00512219 0.06068553]\n [0.34789523 0.02978675 0.54527587 0.07854763 0.00512219 0.06068553]\n [0.34789523 0.02978675 0.54527587 0.07854763 0.00512219 0.06068553]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAg6atPOk74zznRus9Ht03PZfQvby4vMw9/1z9vRT/pL3SE4g+bl8vPTsL8j0yEA8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.02119756 0.02773853 0.11488133]\n [ 0.04488861 -0.02317075 0.09996933]\n [-0.12371253 -0.08056465 0.26577622]\n [ 0.04281562 0.11818548 0.13971022]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIwHlx4qsd47+UhpRSlIwBbJRLMowBdJRHQKr8c98JD3N1fZQoaAZoCWgPQwhfDVAaalTyv5SGlFKUaBVLMmgWR0Cq/BjCHh0hdX2UKGgGaAloD0MIkKD4Mebu8L+UhpRSlGgVSzJoFkdAqvu/MGHHm3V9lChoBmgJaA9DCDJ3LSEftPO/lIaUUpRoFUsyaBZHQKr7YIZZSvV1fZQoaAZoCWgPQwiCj8GKUy3xv5SGlFKUaBVLMmgWR0Cq/pd1uBMBdX2UKGgGaAloD0MIP3PWpxxT+b+UhpRSlGgVSzJoFkdAqv48h3aBZ3V9lChoBmgJaA9DCAR1yqMb4eS/lIaUUpRoFUsyaBZHQKr94zLOiWV1fZQoaAZoCWgPQwhoQpPEkvLvv5SGlFKUaBVLMmgWR0Cq/YTRIBikdX2UKGgGaAloD0MIdAgcCTTY8L+UhpRSlGgVSzJoFkdAqwCSIJqqO3V9lChoBmgJaA9DCLDG2XQEMPm/lIaUUpRoFUsyaBZHQKsANwqAjIJ1fZQoaAZoCWgPQwiNRdPZyeDmv5SGlFKUaBVLMmgWR0Cq/91lPJq7dX2UKGgGaAloD0MINBDLZg5J6r+UhpRSlGgVSzJoFkdAqv9+kvboKXV9lChoBmgJaA9DCBQjS+ZYnvK/lIaUUpRoFUsyaBZHQKsB88q4H5d1fZQoaAZoCWgPQwhNTYI3pNHpv5SGlFKUaBVLMmgWR0CrAZenhsIndX2UKGgGaAloD0MIhuKON/mt+7+UhpRSlGgVSzJoFkdAqwE9KwpvxnV9lChoBmgJaA9DCDz1SIPbmvC/lIaUUpRoFUsyaBZHQKsA3VVghKV1fZQoaAZoCWgPQwgtI/Weymnev5SGlFKUaBVLMmgWR0CrAx0cwQDndX2UKGgGaAloD0MIlsyxvKse+L+UhpRSlGgVSzJoFkdAqwLBE+gUUXV9lChoBmgJaA9DCGYwRiQK7fW/lIaUUpRoFUsyaBZHQKsCZrkbPyF1fZQoaAZoCWgPQwjOGyeFeQ/vv5SGlFKUaBVLMmgWR0CrAgcZ1mrbdX2UKGgGaAloD0MITKlLxjGS87+UhpRSlGgVSzJoFkdAqwQ9wHZ9NXV9lChoBmgJaA9DCHFWRE30+fO/lIaUUpRoFUsyaBZHQKsD4eWfK6p1fZQoaAZoCWgPQwiERrBx/Tvtv5SGlFKUaBVLMmgWR0CrA4euFHrhdX2UKGgGaAloD0MIFOgTeZJ08b+UhpRSlGgVSzJoFkdAqwMoDs+mnHV9lChoBmgJaA9DCIv5uaEpe/a/lIaUUpRoFUsyaBZHQKsFYNbTtsx1fZQoaAZoCWgPQwh/iXjr/Jvxv5SGlFKUaBVLMmgWR0CrBQTsyBTXdX2UKGgGaAloD0MIUrgehevR47+UhpRSlGgVSzJoFkdAqwSqpPykK3V9lChoBmgJaA9DCNl22hoRjOS/lIaUUpRoFUsyaBZHQKsESzLwF1V1fZQoaAZoCWgPQwhtG0ZB8Lj0v5SGlFKUaBVLMmgWR0CrBnpDmbLEdX2UKGgGaAloD0MItd5vtOOG6L+UhpRSlGgVSzJoFkdAqwYeT/yXlnV9lChoBmgJaA9DCHWsUnqmV/C/lIaUUpRoFUsyaBZHQKsFw9f1Hvt1fZQoaAZoCWgPQwhiTtAmhw/5v5SGlFKUaBVLMmgWR0CrBWQIMSbpdX2UKGgGaAloD0MIf9+/eXFi4L+UhpRSlGgVSzJoFkdAqwedhE0BO3V9lChoBmgJaA9DCPOspBXf0O+/lIaUUpRoFUsyaBZHQKsHQXHim2t1fZQoaAZoCWgPQwiOImsNpXbrv5SGlFKUaBVLMmgWR0CrBucqOLiudX2UKGgGaAloD0MIJv+Tv3tH1b+UhpRSlGgVSzJoFkdAqwaHnZCfH3V9lChoBmgJaA9DCCoeF9UiotW/lIaUUpRoFUsyaBZHQKsIvbvgFX91fZQoaAZoCWgPQwjhfsADA4jwv5SGlFKUaBVLMmgWR0CrCGHXEqDsdX2UKGgGaAloD0MIK/nYXaCk4L+UhpRSlGgVSzJoFkdAqwgHtMPBi3V9lChoBmgJaA9DCKPNcW4Tbvq/lIaUUpRoFUsyaBZHQKsHqD1XeWR1fZQoaAZoCWgPQwiPpnoy/+jZv5SGlFKUaBVLMmgWR0CrCd/KISDidX2UKGgGaAloD0MIX38SnztB5r+UhpRSlGgVSzJoFkdAqwmD238XN3V9lChoBmgJaA9DCFlS7j7Hx+e/lIaUUpRoFUsyaBZHQKsJKXkYGdJ1fZQoaAZoCWgPQwh4f7xXrUzzv5SGlFKUaBVLMmgWR0CrCMnctXgcdX2UKGgGaAloD0MIn62Dg72J1b+UhpRSlGgVSzJoFkdAqwr6PbO/tnV9lChoBmgJaA9DCEM6PITxU+2/lIaUUpRoFUsyaBZHQKsKnmEoOQR1fZQoaAZoCWgPQwioyCHi5pTxv5SGlFKUaBVLMmgWR0CrCkP2wmmcdX2UKGgGaAloD0MISDKrd7id67+UhpRSlGgVSzJoFkdAqwnkYbbUPXV9lChoBmgJaA9DCHB4QURq2vK/lIaUUpRoFUsyaBZHQKsMD75VOsV1fZQoaAZoCWgPQwipM/eQ8L3qv5SGlFKUaBVLMmgWR0CrC7OivgWKdX2UKGgGaAloD0MIe0/ltKfk37+UhpRSlGgVSzJoFkdAqwtZUR3/xXV9lChoBmgJaA9DCMKKU62FWdO/lIaUUpRoFUsyaBZHQKsK+YKIBR11fZQoaAZoCWgPQwinBwWlaGXsv5SGlFKUaBVLMmgWR0CrDTxTjvNNdX2UKGgGaAloD0MID3uhgO3g6L+UhpRSlGgVSzJoFkdAqwzgf4h2XHV9lChoBmgJaA9DCNMSK6ORz9m/lIaUUpRoFUsyaBZHQKsMhj3mFJx1fZQoaAZoCWgPQwj8jAsHQrLXv5SGlFKUaBVLMmgWR0CrDCbCBPKudX2UKGgGaAloD0MIfPKwUGua4r+UhpRSlGgVSzJoFkdAqw5QsunMuHV9lChoBmgJaA9DCChjfJi97O2/lIaUUpRoFUsyaBZHQKsN9JkGzKN1fZQoaAZoCWgPQwg/qmG/J9bXv5SGlFKUaBVLMmgWR0CrDZpA2Q4kdX2UKGgGaAloD0MI0eY4twn327+UhpRSlGgVSzJoFkdAqw06i48U23V9lChoBmgJaA9DCIEhq1s9J+C/lIaUUpRoFUsyaBZHQKsPbAO8TSN1fZQoaAZoCWgPQwgBF2TL8vXsv5SGlFKUaBVLMmgWR0CrDw/ReC04dX2UKGgGaAloD0MIeLgdGhaj2r+UhpRSlGgVSzJoFkdAqw61bor4FnV9lChoBmgJaA9DCN8Vwf9WMuS/lIaUUpRoFUsyaBZHQKsOVeQ+2Vp1fZQoaAZoCWgPQwgT04VY/ZHnv5SGlFKUaBVLMmgWR0CrEJ51eSjhdX2UKGgGaAloD0MImPkOfuKA4L+UhpRSlGgVSzJoFkdAqxBCQo1DSnV9lChoBmgJaA9DCKUSntDrz+m/lIaUUpRoFUsyaBZHQKsP574SHuZ1fZQoaAZoCWgPQwiWr8vwn27Zv5SGlFKUaBVLMmgWR0CrD4gIIF/ydX2UKGgGaAloD0MIujDSi9r927+UhpRSlGgVSzJoFkdAqxHPhqCYkXV9lChoBmgJaA9DCDT4+8Vsydy/lIaUUpRoFUsyaBZHQKsRc8RL9Mt1fZQoaAZoCWgPQwiz0qQUdPvgv5SGlFKUaBVLMmgWR0CrERlq8DjjdX2UKGgGaAloD0MIfZdSl4xj4L+UhpRSlGgVSzJoFkdAqxC5z90ihXV9lChoBmgJaA9DCF1OCYhJuO6/lIaUUpRoFUsyaBZHQKsS8hbnoxJ1fZQoaAZoCWgPQwh2cLA3MaTjv5SGlFKUaBVLMmgWR0CrEpYvnKW+dX2UKGgGaAloD0MIlnoWhPK+47+UhpRSlGgVSzJoFkdAqxI8GJN0vHV9lChoBmgJaA9DCLaBO1CnPNu/lIaUUpRoFUsyaBZHQKsR3IkJKJ51fZQoaAZoCWgPQwjoobYNoyDav5SGlFKUaBVLMmgWR0CrFAaeoUBXdX2UKGgGaAloD0MIcM0d/S/X57+UhpRSlGgVSzJoFkdAqxOqnFYMfHV9lChoBmgJaA9DCJLM6h1uh9i/lIaUUpRoFUsyaBZHQKsTUEFGG211fZQoaAZoCWgPQwjrkJvhBvzpv5SGlFKUaBVLMmgWR0CrEvBmwqy4dX2UKGgGaAloD0MIrcCQ1a0e6r+UhpRSlGgVSzJoFkdAqxUqSJTESHV9lChoBmgJaA9DCLeXNEbrqNm/lIaUUpRoFUsyaBZHQKsUzmDDjzZ1fZQoaAZoCWgPQwj/ImjMJGrov5SGlFKUaBVLMmgWR0CrFHQEZBLPdX2UKGgGaAloD0MIAiocQSrFzr+UhpRSlGgVSzJoFkdAqxQUa2nbZnV9lChoBmgJaA9DCL+bbtkhfuS/lIaUUpRoFUsyaBZHQKsW9ZK3/gl1fZQoaAZoCWgPQwg6PITx07jJv5SGlFKUaBVLMmgWR0CrFppUYKpldX2UKGgGaAloD0MI0gDeAgmK37+UhpRSlGgVSzJoFkdAqxZBNh3JP3V9lChoBmgJaA9DCDeOWItPAde/lIaUUpRoFUsyaBZHQKsV4oxYaHd1fZQoaAZoCWgPQwhwJxHhX4Tiv5SGlFKUaBVLMmgWR0CrGL1Fpfx+dX2UKGgGaAloD0MId4GSAgtg3L+UhpRSlGgVSzJoFkdAqxhiQ1aW5nV9lChoBmgJaA9DCGK85lWdVeG/lIaUUpRoFUsyaBZHQKsYCOOsDGN1fZQoaAZoCWgPQwhKtrqcEpDkv5SGlFKUaBVLMmgWR0CrF6prLyMDdX2UKGgGaAloD0MI2QkvwakPzL+UhpRSlGgVSzJoFkdAqxqSowVTJnV9lChoBmgJaA9DCAN5dvnWh+e/lIaUUpRoFUsyaBZHQKsaN6a9bot1fZQoaAZoCWgPQwjUCz7NyYvfv5SGlFKUaBVLMmgWR0CrGd3/5tWNdX2UKGgGaAloD0MI42w6ArhZ3L+UhpRSlGgVSzJoFkdAqxl/LA57xHV9lChoBmgJaA9DCNoeveE+ct+/lIaUUpRoFUsyaBZHQKscdziCJ411fZQoaAZoCWgPQwgV/aGZJ9fQv5SGlFKUaBVLMmgWR0CrHBvYWcjJdX2UKGgGaAloD0MIm5DWGHRC2L+UhpRSlGgVSzJoFkdAqxvCiGnGbXV9lChoBmgJaA9DCLQiaqLPR9m/lIaUUpRoFUsyaBZHQKsbY14Pf9B1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31250, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (281 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.48687498876242896, "std_reward": 0.164402818009823, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-09T23:15:56.286030"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc0d8029b0fa8601fd513431b71533199ee572dba2a19a12b3dc316bf44c8611
3
+ size 3056