dddraxxx commited on
Commit
dce6f86
·
verified ·
1 Parent(s): 6928767

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. checkpoint-100/added_tokens.json +24 -0
  2. checkpoint-100/chat_template.json +3 -0
  3. checkpoint-100/config.json +51 -0
  4. checkpoint-100/generation_config.json +16 -0
  5. checkpoint-100/merges.txt +0 -0
  6. checkpoint-100/model.safetensors.index.json +831 -0
  7. checkpoint-100/preprocessor_config.json +29 -0
  8. checkpoint-100/special_tokens_map.json +31 -0
  9. checkpoint-100/tokenizer_config.json +209 -0
  10. checkpoint-100/trainer_state.json +1433 -0
  11. checkpoint-100/vocab.json +0 -0
  12. checkpoint-1100/added_tokens.json +24 -0
  13. checkpoint-1200/tokenizer_config.json +209 -0
  14. checkpoint-1300/added_tokens.json +24 -0
  15. checkpoint-1300/config.json +51 -0
  16. checkpoint-1300/generation_config.json +16 -0
  17. checkpoint-1300/model.safetensors.index.json +831 -0
  18. checkpoint-1300/preprocessor_config.json +29 -0
  19. checkpoint-1300/special_tokens_map.json +31 -0
  20. checkpoint-1300/tokenizer_config.json +209 -0
  21. checkpoint-1300/trainer_state.json +0 -0
  22. checkpoint-1400/added_tokens.json +24 -0
  23. checkpoint-1400/chat_template.json +3 -0
  24. checkpoint-1400/config.json +51 -0
  25. checkpoint-1400/generation_config.json +16 -0
  26. checkpoint-1400/merges.txt +0 -0
  27. checkpoint-1400/model.safetensors.index.json +831 -0
  28. checkpoint-1400/preprocessor_config.json +29 -0
  29. checkpoint-1400/special_tokens_map.json +31 -0
  30. checkpoint-1400/tokenizer_config.json +209 -0
  31. checkpoint-1400/trainer_state.json +0 -0
  32. checkpoint-1400/vocab.json +0 -0
  33. checkpoint-1500/added_tokens.json +24 -0
  34. checkpoint-1500/chat_template.json +3 -0
  35. checkpoint-1500/generation_config.json +16 -0
  36. checkpoint-1500/preprocessor_config.json +29 -0
  37. checkpoint-200/added_tokens.json +24 -0
  38. checkpoint-200/chat_template.json +3 -0
  39. checkpoint-200/config.json +51 -0
  40. checkpoint-200/generation_config.json +16 -0
  41. checkpoint-200/merges.txt +0 -0
  42. checkpoint-200/model.safetensors.index.json +831 -0
  43. checkpoint-200/preprocessor_config.json +29 -0
  44. checkpoint-200/special_tokens_map.json +31 -0
  45. checkpoint-200/tokenizer_config.json +209 -0
  46. checkpoint-200/trainer_state.json +2833 -0
  47. checkpoint-200/vocab.json +0 -0
  48. checkpoint-300/added_tokens.json +24 -0
  49. checkpoint-400/added_tokens.json +24 -0
  50. checkpoint-400/chat_template.json +3 -0
checkpoint-100/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-100/chat_template.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
3
+ }
checkpoint-100/config.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-VL-3B-Instruct",
3
+ "architectures": [
4
+ "Qwen2_5_VLForConditionalGeneration"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 2048,
11
+ "image_token_id": 151655,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 11008,
14
+ "max_position_embeddings": 128000,
15
+ "max_window_layers": 70,
16
+ "model_type": "qwen2_5_vl",
17
+ "num_attention_heads": 16,
18
+ "num_hidden_layers": 36,
19
+ "num_key_value_heads": 2,
20
+ "rms_norm_eps": 1e-06,
21
+ "rope_scaling": {
22
+ "mrope_section": [
23
+ 16,
24
+ 24,
25
+ 24
26
+ ],
27
+ "rope_type": "default",
28
+ "type": "default"
29
+ },
30
+ "rope_theta": 1000000.0,
31
+ "sliding_window": 32768,
32
+ "tie_word_embeddings": true,
33
+ "torch_dtype": "bfloat16",
34
+ "transformers_version": "4.50.0.dev0",
35
+ "use_cache": false,
36
+ "use_sliding_window": false,
37
+ "video_token_id": 151656,
38
+ "vision_config": {
39
+ "hidden_size": 1280,
40
+ "in_chans": 3,
41
+ "model_type": "qwen2_5_vl",
42
+ "out_hidden_size": 2048,
43
+ "spatial_patch_size": 14,
44
+ "tokens_per_second": 2,
45
+ "torch_dtype": "float32"
46
+ },
47
+ "vision_end_token_id": 151653,
48
+ "vision_start_token_id": 151652,
49
+ "vision_token_id": 151654,
50
+ "vocab_size": 151936
51
+ }
checkpoint-100/generation_config.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "attn_implementation": "flash_attention_2",
3
+ "bos_token_id": 151643,
4
+ "do_sample": true,
5
+ "eos_token_id": [
6
+ 151645,
7
+ 151643
8
+ ],
9
+ "pad_token_id": 151643,
10
+ "repetition_penalty": 1.05,
11
+ "temperature": 0.1,
12
+ "top_k": 1,
13
+ "top_p": 0.001,
14
+ "transformers_version": "4.50.0.dev0",
15
+ "use_cache": false
16
+ }
checkpoint-100/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-100/model.safetensors.index.json ADDED
@@ -0,0 +1,831 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 7509245952
4
+ },
5
+ "weight_map": {
6
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
7
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
17
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
18
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
19
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
26
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
28
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
30
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
31
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
37
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
38
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
40
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
42
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
49
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
50
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
52
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
53
+ "model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
54
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
55
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
61
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
62
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
64
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
65
+ "model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
66
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
67
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
73
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
74
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
76
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
77
+ "model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
78
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
79
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
85
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
86
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
88
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
89
+ "model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
90
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
91
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
97
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
98
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
100
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
101
+ "model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
102
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
103
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
109
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
110
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
112
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
113
+ "model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
114
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
115
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
121
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
122
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
124
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
125
+ "model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
126
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
127
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
129
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
133
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
134
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
135
+ "model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
136
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
137
+ "model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
138
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
139
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00002.safetensors",
140
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
141
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
142
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
143
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
144
+ "model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
145
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
146
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
147
+ "model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
148
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
149
+ "model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
150
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
151
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
152
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
153
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
154
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
155
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
156
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
157
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
158
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
159
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
160
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
161
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
162
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
163
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
164
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
165
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
166
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
167
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
168
+ "model.layers.20.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
169
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
170
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
171
+ "model.layers.20.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
172
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
173
+ "model.layers.20.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
174
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
175
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
176
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
177
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
178
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
179
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
180
+ "model.layers.21.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
181
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
182
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
183
+ "model.layers.21.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
184
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
185
+ "model.layers.21.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
186
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
187
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
188
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
189
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
190
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
191
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
192
+ "model.layers.22.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
193
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
194
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
195
+ "model.layers.22.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
196
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
197
+ "model.layers.22.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
198
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
199
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
200
+ "model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
201
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
202
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
203
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
204
+ "model.layers.23.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
205
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
206
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
207
+ "model.layers.23.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
208
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
209
+ "model.layers.23.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
210
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
211
+ "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
212
+ "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
213
+ "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
214
+ "model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
215
+ "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
216
+ "model.layers.24.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
217
+ "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
218
+ "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
219
+ "model.layers.24.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
220
+ "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
221
+ "model.layers.24.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
222
+ "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
223
+ "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
224
+ "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
225
+ "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
226
+ "model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
227
+ "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
228
+ "model.layers.25.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
229
+ "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
230
+ "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
231
+ "model.layers.25.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
232
+ "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
233
+ "model.layers.25.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
234
+ "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
235
+ "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
236
+ "model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
237
+ "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
238
+ "model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
239
+ "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
240
+ "model.layers.26.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
241
+ "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
242
+ "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
243
+ "model.layers.26.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
244
+ "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
245
+ "model.layers.26.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
246
+ "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
247
+ "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
248
+ "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
249
+ "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
250
+ "model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
251
+ "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
252
+ "model.layers.27.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
253
+ "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
254
+ "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
255
+ "model.layers.27.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
256
+ "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
257
+ "model.layers.27.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
258
+ "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
259
+ "model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
260
+ "model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
261
+ "model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
262
+ "model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
263
+ "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
264
+ "model.layers.28.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
265
+ "model.layers.28.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
266
+ "model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
267
+ "model.layers.28.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
268
+ "model.layers.28.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
269
+ "model.layers.28.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
270
+ "model.layers.28.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
271
+ "model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
272
+ "model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
273
+ "model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
274
+ "model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
275
+ "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
276
+ "model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
277
+ "model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
278
+ "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
279
+ "model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
280
+ "model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
281
+ "model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
282
+ "model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
283
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
284
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
285
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
286
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
287
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
288
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
289
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
290
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
291
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
292
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
293
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
294
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
295
+ "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
296
+ "model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
297
+ "model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
298
+ "model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
299
+ "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
300
+ "model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
301
+ "model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
302
+ "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
303
+ "model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
304
+ "model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
305
+ "model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
306
+ "model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
307
+ "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
308
+ "model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
309
+ "model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
310
+ "model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
311
+ "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
312
+ "model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
313
+ "model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
314
+ "model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
315
+ "model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
316
+ "model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
317
+ "model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
318
+ "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
319
+ "model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
320
+ "model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
321
+ "model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
322
+ "model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
323
+ "model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
324
+ "model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
325
+ "model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
326
+ "model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
327
+ "model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
328
+ "model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
329
+ "model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
330
+ "model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
331
+ "model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
332
+ "model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
333
+ "model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
334
+ "model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
335
+ "model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
336
+ "model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
337
+ "model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
338
+ "model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
339
+ "model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
340
+ "model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
341
+ "model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
342
+ "model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
343
+ "model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
344
+ "model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
345
+ "model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
346
+ "model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
347
+ "model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
348
+ "model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
349
+ "model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
350
+ "model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
351
+ "model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
352
+ "model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
353
+ "model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
354
+ "model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
355
+ "model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
356
+ "model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
357
+ "model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
358
+ "model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
359
+ "model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
360
+ "model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
361
+ "model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
362
+ "model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
363
+ "model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
364
+ "model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
365
+ "model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
366
+ "model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
367
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
368
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
369
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
370
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
371
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
372
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
373
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
374
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
375
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
376
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
377
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
378
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
379
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
380
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
381
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
382
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
383
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
384
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
385
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
386
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
387
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
388
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
389
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
390
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
391
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
392
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
393
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
394
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
395
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
396
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
397
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
398
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
399
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
400
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
401
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
402
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
403
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
404
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
405
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
406
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
407
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
408
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
409
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
410
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
411
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
412
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
413
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
414
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
415
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
416
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
417
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
418
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
419
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
420
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
421
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
422
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
423
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
424
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
425
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
426
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
427
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
428
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
429
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
430
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
431
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
432
+ "model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
433
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
434
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
435
+ "model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
436
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
437
+ "model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
438
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
439
+ "model.norm.weight": "model-00002-of-00002.safetensors",
440
+ "visual.blocks.0.attn.proj.bias": "model-00001-of-00002.safetensors",
441
+ "visual.blocks.0.attn.proj.weight": "model-00001-of-00002.safetensors",
442
+ "visual.blocks.0.attn.qkv.bias": "model-00001-of-00002.safetensors",
443
+ "visual.blocks.0.attn.qkv.weight": "model-00001-of-00002.safetensors",
444
+ "visual.blocks.0.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
445
+ "visual.blocks.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
446
+ "visual.blocks.0.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
447
+ "visual.blocks.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
448
+ "visual.blocks.0.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
449
+ "visual.blocks.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
450
+ "visual.blocks.0.norm1.weight": "model-00001-of-00002.safetensors",
451
+ "visual.blocks.0.norm2.weight": "model-00001-of-00002.safetensors",
452
+ "visual.blocks.1.attn.proj.bias": "model-00001-of-00002.safetensors",
453
+ "visual.blocks.1.attn.proj.weight": "model-00001-of-00002.safetensors",
454
+ "visual.blocks.1.attn.qkv.bias": "model-00001-of-00002.safetensors",
455
+ "visual.blocks.1.attn.qkv.weight": "model-00001-of-00002.safetensors",
456
+ "visual.blocks.1.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
457
+ "visual.blocks.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
458
+ "visual.blocks.1.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
459
+ "visual.blocks.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
460
+ "visual.blocks.1.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
461
+ "visual.blocks.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
462
+ "visual.blocks.1.norm1.weight": "model-00001-of-00002.safetensors",
463
+ "visual.blocks.1.norm2.weight": "model-00001-of-00002.safetensors",
464
+ "visual.blocks.10.attn.proj.bias": "model-00001-of-00002.safetensors",
465
+ "visual.blocks.10.attn.proj.weight": "model-00001-of-00002.safetensors",
466
+ "visual.blocks.10.attn.qkv.bias": "model-00001-of-00002.safetensors",
467
+ "visual.blocks.10.attn.qkv.weight": "model-00001-of-00002.safetensors",
468
+ "visual.blocks.10.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
469
+ "visual.blocks.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
470
+ "visual.blocks.10.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
471
+ "visual.blocks.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
472
+ "visual.blocks.10.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
473
+ "visual.blocks.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
474
+ "visual.blocks.10.norm1.weight": "model-00001-of-00002.safetensors",
475
+ "visual.blocks.10.norm2.weight": "model-00001-of-00002.safetensors",
476
+ "visual.blocks.11.attn.proj.bias": "model-00001-of-00002.safetensors",
477
+ "visual.blocks.11.attn.proj.weight": "model-00001-of-00002.safetensors",
478
+ "visual.blocks.11.attn.qkv.bias": "model-00001-of-00002.safetensors",
479
+ "visual.blocks.11.attn.qkv.weight": "model-00001-of-00002.safetensors",
480
+ "visual.blocks.11.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
481
+ "visual.blocks.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
482
+ "visual.blocks.11.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
483
+ "visual.blocks.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
484
+ "visual.blocks.11.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
485
+ "visual.blocks.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
486
+ "visual.blocks.11.norm1.weight": "model-00001-of-00002.safetensors",
487
+ "visual.blocks.11.norm2.weight": "model-00001-of-00002.safetensors",
488
+ "visual.blocks.12.attn.proj.bias": "model-00001-of-00002.safetensors",
489
+ "visual.blocks.12.attn.proj.weight": "model-00001-of-00002.safetensors",
490
+ "visual.blocks.12.attn.qkv.bias": "model-00001-of-00002.safetensors",
491
+ "visual.blocks.12.attn.qkv.weight": "model-00001-of-00002.safetensors",
492
+ "visual.blocks.12.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
493
+ "visual.blocks.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
494
+ "visual.blocks.12.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
495
+ "visual.blocks.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
496
+ "visual.blocks.12.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
497
+ "visual.blocks.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
498
+ "visual.blocks.12.norm1.weight": "model-00001-of-00002.safetensors",
499
+ "visual.blocks.12.norm2.weight": "model-00001-of-00002.safetensors",
500
+ "visual.blocks.13.attn.proj.bias": "model-00001-of-00002.safetensors",
501
+ "visual.blocks.13.attn.proj.weight": "model-00001-of-00002.safetensors",
502
+ "visual.blocks.13.attn.qkv.bias": "model-00001-of-00002.safetensors",
503
+ "visual.blocks.13.attn.qkv.weight": "model-00001-of-00002.safetensors",
504
+ "visual.blocks.13.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
505
+ "visual.blocks.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
506
+ "visual.blocks.13.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
507
+ "visual.blocks.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
508
+ "visual.blocks.13.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
509
+ "visual.blocks.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
510
+ "visual.blocks.13.norm1.weight": "model-00001-of-00002.safetensors",
511
+ "visual.blocks.13.norm2.weight": "model-00001-of-00002.safetensors",
512
+ "visual.blocks.14.attn.proj.bias": "model-00001-of-00002.safetensors",
513
+ "visual.blocks.14.attn.proj.weight": "model-00001-of-00002.safetensors",
514
+ "visual.blocks.14.attn.qkv.bias": "model-00001-of-00002.safetensors",
515
+ "visual.blocks.14.attn.qkv.weight": "model-00001-of-00002.safetensors",
516
+ "visual.blocks.14.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
517
+ "visual.blocks.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
518
+ "visual.blocks.14.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
519
+ "visual.blocks.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
520
+ "visual.blocks.14.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
521
+ "visual.blocks.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
522
+ "visual.blocks.14.norm1.weight": "model-00001-of-00002.safetensors",
523
+ "visual.blocks.14.norm2.weight": "model-00001-of-00002.safetensors",
524
+ "visual.blocks.15.attn.proj.bias": "model-00001-of-00002.safetensors",
525
+ "visual.blocks.15.attn.proj.weight": "model-00001-of-00002.safetensors",
526
+ "visual.blocks.15.attn.qkv.bias": "model-00001-of-00002.safetensors",
527
+ "visual.blocks.15.attn.qkv.weight": "model-00001-of-00002.safetensors",
528
+ "visual.blocks.15.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
529
+ "visual.blocks.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
530
+ "visual.blocks.15.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
531
+ "visual.blocks.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
532
+ "visual.blocks.15.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
533
+ "visual.blocks.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
534
+ "visual.blocks.15.norm1.weight": "model-00001-of-00002.safetensors",
535
+ "visual.blocks.15.norm2.weight": "model-00001-of-00002.safetensors",
536
+ "visual.blocks.16.attn.proj.bias": "model-00001-of-00002.safetensors",
537
+ "visual.blocks.16.attn.proj.weight": "model-00001-of-00002.safetensors",
538
+ "visual.blocks.16.attn.qkv.bias": "model-00001-of-00002.safetensors",
539
+ "visual.blocks.16.attn.qkv.weight": "model-00001-of-00002.safetensors",
540
+ "visual.blocks.16.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
541
+ "visual.blocks.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
542
+ "visual.blocks.16.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
543
+ "visual.blocks.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
544
+ "visual.blocks.16.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
545
+ "visual.blocks.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
546
+ "visual.blocks.16.norm1.weight": "model-00001-of-00002.safetensors",
547
+ "visual.blocks.16.norm2.weight": "model-00001-of-00002.safetensors",
548
+ "visual.blocks.17.attn.proj.bias": "model-00001-of-00002.safetensors",
549
+ "visual.blocks.17.attn.proj.weight": "model-00001-of-00002.safetensors",
550
+ "visual.blocks.17.attn.qkv.bias": "model-00001-of-00002.safetensors",
551
+ "visual.blocks.17.attn.qkv.weight": "model-00001-of-00002.safetensors",
552
+ "visual.blocks.17.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
553
+ "visual.blocks.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
554
+ "visual.blocks.17.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
555
+ "visual.blocks.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
556
+ "visual.blocks.17.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
557
+ "visual.blocks.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
558
+ "visual.blocks.17.norm1.weight": "model-00001-of-00002.safetensors",
559
+ "visual.blocks.17.norm2.weight": "model-00001-of-00002.safetensors",
560
+ "visual.blocks.18.attn.proj.bias": "model-00001-of-00002.safetensors",
561
+ "visual.blocks.18.attn.proj.weight": "model-00001-of-00002.safetensors",
562
+ "visual.blocks.18.attn.qkv.bias": "model-00001-of-00002.safetensors",
563
+ "visual.blocks.18.attn.qkv.weight": "model-00001-of-00002.safetensors",
564
+ "visual.blocks.18.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
565
+ "visual.blocks.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
566
+ "visual.blocks.18.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
567
+ "visual.blocks.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
568
+ "visual.blocks.18.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
569
+ "visual.blocks.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
570
+ "visual.blocks.18.norm1.weight": "model-00001-of-00002.safetensors",
571
+ "visual.blocks.18.norm2.weight": "model-00001-of-00002.safetensors",
572
+ "visual.blocks.19.attn.proj.bias": "model-00001-of-00002.safetensors",
573
+ "visual.blocks.19.attn.proj.weight": "model-00001-of-00002.safetensors",
574
+ "visual.blocks.19.attn.qkv.bias": "model-00001-of-00002.safetensors",
575
+ "visual.blocks.19.attn.qkv.weight": "model-00001-of-00002.safetensors",
576
+ "visual.blocks.19.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
577
+ "visual.blocks.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
578
+ "visual.blocks.19.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
579
+ "visual.blocks.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
580
+ "visual.blocks.19.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
581
+ "visual.blocks.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
582
+ "visual.blocks.19.norm1.weight": "model-00001-of-00002.safetensors",
583
+ "visual.blocks.19.norm2.weight": "model-00001-of-00002.safetensors",
584
+ "visual.blocks.2.attn.proj.bias": "model-00001-of-00002.safetensors",
585
+ "visual.blocks.2.attn.proj.weight": "model-00001-of-00002.safetensors",
586
+ "visual.blocks.2.attn.qkv.bias": "model-00001-of-00002.safetensors",
587
+ "visual.blocks.2.attn.qkv.weight": "model-00001-of-00002.safetensors",
588
+ "visual.blocks.2.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
589
+ "visual.blocks.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
590
+ "visual.blocks.2.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
591
+ "visual.blocks.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
592
+ "visual.blocks.2.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
593
+ "visual.blocks.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
594
+ "visual.blocks.2.norm1.weight": "model-00001-of-00002.safetensors",
595
+ "visual.blocks.2.norm2.weight": "model-00001-of-00002.safetensors",
596
+ "visual.blocks.20.attn.proj.bias": "model-00001-of-00002.safetensors",
597
+ "visual.blocks.20.attn.proj.weight": "model-00001-of-00002.safetensors",
598
+ "visual.blocks.20.attn.qkv.bias": "model-00001-of-00002.safetensors",
599
+ "visual.blocks.20.attn.qkv.weight": "model-00001-of-00002.safetensors",
600
+ "visual.blocks.20.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
601
+ "visual.blocks.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
602
+ "visual.blocks.20.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
603
+ "visual.blocks.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
604
+ "visual.blocks.20.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
605
+ "visual.blocks.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
606
+ "visual.blocks.20.norm1.weight": "model-00001-of-00002.safetensors",
607
+ "visual.blocks.20.norm2.weight": "model-00001-of-00002.safetensors",
608
+ "visual.blocks.21.attn.proj.bias": "model-00001-of-00002.safetensors",
609
+ "visual.blocks.21.attn.proj.weight": "model-00001-of-00002.safetensors",
610
+ "visual.blocks.21.attn.qkv.bias": "model-00001-of-00002.safetensors",
611
+ "visual.blocks.21.attn.qkv.weight": "model-00001-of-00002.safetensors",
612
+ "visual.blocks.21.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
613
+ "visual.blocks.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
614
+ "visual.blocks.21.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
615
+ "visual.blocks.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
616
+ "visual.blocks.21.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
617
+ "visual.blocks.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
618
+ "visual.blocks.21.norm1.weight": "model-00001-of-00002.safetensors",
619
+ "visual.blocks.21.norm2.weight": "model-00001-of-00002.safetensors",
620
+ "visual.blocks.22.attn.proj.bias": "model-00001-of-00002.safetensors",
621
+ "visual.blocks.22.attn.proj.weight": "model-00001-of-00002.safetensors",
622
+ "visual.blocks.22.attn.qkv.bias": "model-00001-of-00002.safetensors",
623
+ "visual.blocks.22.attn.qkv.weight": "model-00001-of-00002.safetensors",
624
+ "visual.blocks.22.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
625
+ "visual.blocks.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
626
+ "visual.blocks.22.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
627
+ "visual.blocks.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
628
+ "visual.blocks.22.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
629
+ "visual.blocks.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
630
+ "visual.blocks.22.norm1.weight": "model-00001-of-00002.safetensors",
631
+ "visual.blocks.22.norm2.weight": "model-00001-of-00002.safetensors",
632
+ "visual.blocks.23.attn.proj.bias": "model-00001-of-00002.safetensors",
633
+ "visual.blocks.23.attn.proj.weight": "model-00001-of-00002.safetensors",
634
+ "visual.blocks.23.attn.qkv.bias": "model-00001-of-00002.safetensors",
635
+ "visual.blocks.23.attn.qkv.weight": "model-00001-of-00002.safetensors",
636
+ "visual.blocks.23.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
637
+ "visual.blocks.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
638
+ "visual.blocks.23.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
639
+ "visual.blocks.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
640
+ "visual.blocks.23.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
641
+ "visual.blocks.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
642
+ "visual.blocks.23.norm1.weight": "model-00001-of-00002.safetensors",
643
+ "visual.blocks.23.norm2.weight": "model-00001-of-00002.safetensors",
644
+ "visual.blocks.24.attn.proj.bias": "model-00001-of-00002.safetensors",
645
+ "visual.blocks.24.attn.proj.weight": "model-00001-of-00002.safetensors",
646
+ "visual.blocks.24.attn.qkv.bias": "model-00001-of-00002.safetensors",
647
+ "visual.blocks.24.attn.qkv.weight": "model-00001-of-00002.safetensors",
648
+ "visual.blocks.24.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
649
+ "visual.blocks.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
650
+ "visual.blocks.24.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
651
+ "visual.blocks.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
652
+ "visual.blocks.24.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
653
+ "visual.blocks.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
654
+ "visual.blocks.24.norm1.weight": "model-00001-of-00002.safetensors",
655
+ "visual.blocks.24.norm2.weight": "model-00001-of-00002.safetensors",
656
+ "visual.blocks.25.attn.proj.bias": "model-00001-of-00002.safetensors",
657
+ "visual.blocks.25.attn.proj.weight": "model-00001-of-00002.safetensors",
658
+ "visual.blocks.25.attn.qkv.bias": "model-00001-of-00002.safetensors",
659
+ "visual.blocks.25.attn.qkv.weight": "model-00001-of-00002.safetensors",
660
+ "visual.blocks.25.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
661
+ "visual.blocks.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
662
+ "visual.blocks.25.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
663
+ "visual.blocks.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
664
+ "visual.blocks.25.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
665
+ "visual.blocks.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
666
+ "visual.blocks.25.norm1.weight": "model-00001-of-00002.safetensors",
667
+ "visual.blocks.25.norm2.weight": "model-00001-of-00002.safetensors",
668
+ "visual.blocks.26.attn.proj.bias": "model-00001-of-00002.safetensors",
669
+ "visual.blocks.26.attn.proj.weight": "model-00001-of-00002.safetensors",
670
+ "visual.blocks.26.attn.qkv.bias": "model-00001-of-00002.safetensors",
671
+ "visual.blocks.26.attn.qkv.weight": "model-00001-of-00002.safetensors",
672
+ "visual.blocks.26.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
673
+ "visual.blocks.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
674
+ "visual.blocks.26.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
675
+ "visual.blocks.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
676
+ "visual.blocks.26.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
677
+ "visual.blocks.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
678
+ "visual.blocks.26.norm1.weight": "model-00001-of-00002.safetensors",
679
+ "visual.blocks.26.norm2.weight": "model-00001-of-00002.safetensors",
680
+ "visual.blocks.27.attn.proj.bias": "model-00001-of-00002.safetensors",
681
+ "visual.blocks.27.attn.proj.weight": "model-00001-of-00002.safetensors",
682
+ "visual.blocks.27.attn.qkv.bias": "model-00001-of-00002.safetensors",
683
+ "visual.blocks.27.attn.qkv.weight": "model-00001-of-00002.safetensors",
684
+ "visual.blocks.27.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
685
+ "visual.blocks.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
686
+ "visual.blocks.27.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
687
+ "visual.blocks.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
688
+ "visual.blocks.27.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
689
+ "visual.blocks.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
690
+ "visual.blocks.27.norm1.weight": "model-00001-of-00002.safetensors",
691
+ "visual.blocks.27.norm2.weight": "model-00001-of-00002.safetensors",
692
+ "visual.blocks.28.attn.proj.bias": "model-00001-of-00002.safetensors",
693
+ "visual.blocks.28.attn.proj.weight": "model-00001-of-00002.safetensors",
694
+ "visual.blocks.28.attn.qkv.bias": "model-00001-of-00002.safetensors",
695
+ "visual.blocks.28.attn.qkv.weight": "model-00001-of-00002.safetensors",
696
+ "visual.blocks.28.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
697
+ "visual.blocks.28.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
698
+ "visual.blocks.28.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
699
+ "visual.blocks.28.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
700
+ "visual.blocks.28.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
701
+ "visual.blocks.28.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
702
+ "visual.blocks.28.norm1.weight": "model-00001-of-00002.safetensors",
703
+ "visual.blocks.28.norm2.weight": "model-00001-of-00002.safetensors",
704
+ "visual.blocks.29.attn.proj.bias": "model-00001-of-00002.safetensors",
705
+ "visual.blocks.29.attn.proj.weight": "model-00001-of-00002.safetensors",
706
+ "visual.blocks.29.attn.qkv.bias": "model-00001-of-00002.safetensors",
707
+ "visual.blocks.29.attn.qkv.weight": "model-00001-of-00002.safetensors",
708
+ "visual.blocks.29.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
709
+ "visual.blocks.29.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
710
+ "visual.blocks.29.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
711
+ "visual.blocks.29.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
712
+ "visual.blocks.29.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
713
+ "visual.blocks.29.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
714
+ "visual.blocks.29.norm1.weight": "model-00001-of-00002.safetensors",
715
+ "visual.blocks.29.norm2.weight": "model-00001-of-00002.safetensors",
716
+ "visual.blocks.3.attn.proj.bias": "model-00001-of-00002.safetensors",
717
+ "visual.blocks.3.attn.proj.weight": "model-00001-of-00002.safetensors",
718
+ "visual.blocks.3.attn.qkv.bias": "model-00001-of-00002.safetensors",
719
+ "visual.blocks.3.attn.qkv.weight": "model-00001-of-00002.safetensors",
720
+ "visual.blocks.3.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
721
+ "visual.blocks.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
722
+ "visual.blocks.3.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
723
+ "visual.blocks.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
724
+ "visual.blocks.3.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
725
+ "visual.blocks.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
726
+ "visual.blocks.3.norm1.weight": "model-00001-of-00002.safetensors",
727
+ "visual.blocks.3.norm2.weight": "model-00001-of-00002.safetensors",
728
+ "visual.blocks.30.attn.proj.bias": "model-00001-of-00002.safetensors",
729
+ "visual.blocks.30.attn.proj.weight": "model-00001-of-00002.safetensors",
730
+ "visual.blocks.30.attn.qkv.bias": "model-00001-of-00002.safetensors",
731
+ "visual.blocks.30.attn.qkv.weight": "model-00001-of-00002.safetensors",
732
+ "visual.blocks.30.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
733
+ "visual.blocks.30.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
734
+ "visual.blocks.30.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
735
+ "visual.blocks.30.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
736
+ "visual.blocks.30.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
737
+ "visual.blocks.30.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
738
+ "visual.blocks.30.norm1.weight": "model-00001-of-00002.safetensors",
739
+ "visual.blocks.30.norm2.weight": "model-00001-of-00002.safetensors",
740
+ "visual.blocks.31.attn.proj.bias": "model-00001-of-00002.safetensors",
741
+ "visual.blocks.31.attn.proj.weight": "model-00001-of-00002.safetensors",
742
+ "visual.blocks.31.attn.qkv.bias": "model-00001-of-00002.safetensors",
743
+ "visual.blocks.31.attn.qkv.weight": "model-00001-of-00002.safetensors",
744
+ "visual.blocks.31.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
745
+ "visual.blocks.31.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
746
+ "visual.blocks.31.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
747
+ "visual.blocks.31.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
748
+ "visual.blocks.31.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
749
+ "visual.blocks.31.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
750
+ "visual.blocks.31.norm1.weight": "model-00001-of-00002.safetensors",
751
+ "visual.blocks.31.norm2.weight": "model-00001-of-00002.safetensors",
752
+ "visual.blocks.4.attn.proj.bias": "model-00001-of-00002.safetensors",
753
+ "visual.blocks.4.attn.proj.weight": "model-00001-of-00002.safetensors",
754
+ "visual.blocks.4.attn.qkv.bias": "model-00001-of-00002.safetensors",
755
+ "visual.blocks.4.attn.qkv.weight": "model-00001-of-00002.safetensors",
756
+ "visual.blocks.4.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
757
+ "visual.blocks.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
758
+ "visual.blocks.4.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
759
+ "visual.blocks.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
760
+ "visual.blocks.4.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
761
+ "visual.blocks.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
762
+ "visual.blocks.4.norm1.weight": "model-00001-of-00002.safetensors",
763
+ "visual.blocks.4.norm2.weight": "model-00001-of-00002.safetensors",
764
+ "visual.blocks.5.attn.proj.bias": "model-00001-of-00002.safetensors",
765
+ "visual.blocks.5.attn.proj.weight": "model-00001-of-00002.safetensors",
766
+ "visual.blocks.5.attn.qkv.bias": "model-00001-of-00002.safetensors",
767
+ "visual.blocks.5.attn.qkv.weight": "model-00001-of-00002.safetensors",
768
+ "visual.blocks.5.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
769
+ "visual.blocks.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
770
+ "visual.blocks.5.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
771
+ "visual.blocks.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
772
+ "visual.blocks.5.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
773
+ "visual.blocks.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
774
+ "visual.blocks.5.norm1.weight": "model-00001-of-00002.safetensors",
775
+ "visual.blocks.5.norm2.weight": "model-00001-of-00002.safetensors",
776
+ "visual.blocks.6.attn.proj.bias": "model-00001-of-00002.safetensors",
777
+ "visual.blocks.6.attn.proj.weight": "model-00001-of-00002.safetensors",
778
+ "visual.blocks.6.attn.qkv.bias": "model-00001-of-00002.safetensors",
779
+ "visual.blocks.6.attn.qkv.weight": "model-00001-of-00002.safetensors",
780
+ "visual.blocks.6.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
781
+ "visual.blocks.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
782
+ "visual.blocks.6.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
783
+ "visual.blocks.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
784
+ "visual.blocks.6.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
785
+ "visual.blocks.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
786
+ "visual.blocks.6.norm1.weight": "model-00001-of-00002.safetensors",
787
+ "visual.blocks.6.norm2.weight": "model-00001-of-00002.safetensors",
788
+ "visual.blocks.7.attn.proj.bias": "model-00001-of-00002.safetensors",
789
+ "visual.blocks.7.attn.proj.weight": "model-00001-of-00002.safetensors",
790
+ "visual.blocks.7.attn.qkv.bias": "model-00001-of-00002.safetensors",
791
+ "visual.blocks.7.attn.qkv.weight": "model-00001-of-00002.safetensors",
792
+ "visual.blocks.7.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
793
+ "visual.blocks.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
794
+ "visual.blocks.7.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
795
+ "visual.blocks.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
796
+ "visual.blocks.7.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
797
+ "visual.blocks.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
798
+ "visual.blocks.7.norm1.weight": "model-00001-of-00002.safetensors",
799
+ "visual.blocks.7.norm2.weight": "model-00001-of-00002.safetensors",
800
+ "visual.blocks.8.attn.proj.bias": "model-00001-of-00002.safetensors",
801
+ "visual.blocks.8.attn.proj.weight": "model-00001-of-00002.safetensors",
802
+ "visual.blocks.8.attn.qkv.bias": "model-00001-of-00002.safetensors",
803
+ "visual.blocks.8.attn.qkv.weight": "model-00001-of-00002.safetensors",
804
+ "visual.blocks.8.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
805
+ "visual.blocks.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
806
+ "visual.blocks.8.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
807
+ "visual.blocks.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
808
+ "visual.blocks.8.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
809
+ "visual.blocks.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
810
+ "visual.blocks.8.norm1.weight": "model-00001-of-00002.safetensors",
811
+ "visual.blocks.8.norm2.weight": "model-00001-of-00002.safetensors",
812
+ "visual.blocks.9.attn.proj.bias": "model-00001-of-00002.safetensors",
813
+ "visual.blocks.9.attn.proj.weight": "model-00001-of-00002.safetensors",
814
+ "visual.blocks.9.attn.qkv.bias": "model-00001-of-00002.safetensors",
815
+ "visual.blocks.9.attn.qkv.weight": "model-00001-of-00002.safetensors",
816
+ "visual.blocks.9.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
817
+ "visual.blocks.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
818
+ "visual.blocks.9.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
819
+ "visual.blocks.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
820
+ "visual.blocks.9.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
821
+ "visual.blocks.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
822
+ "visual.blocks.9.norm1.weight": "model-00001-of-00002.safetensors",
823
+ "visual.blocks.9.norm2.weight": "model-00001-of-00002.safetensors",
824
+ "visual.merger.ln_q.weight": "model-00001-of-00002.safetensors",
825
+ "visual.merger.mlp.0.bias": "model-00001-of-00002.safetensors",
826
+ "visual.merger.mlp.0.weight": "model-00001-of-00002.safetensors",
827
+ "visual.merger.mlp.2.bias": "model-00001-of-00002.safetensors",
828
+ "visual.merger.mlp.2.weight": "model-00001-of-00002.safetensors",
829
+ "visual.patch_embed.proj.weight": "model-00001-of-00002.safetensors"
830
+ }
831
+ }
checkpoint-100/preprocessor_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": true,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.48145466,
8
+ 0.4578275,
9
+ 0.40821073
10
+ ],
11
+ "image_processor_type": "Qwen2VLImageProcessor",
12
+ "image_std": [
13
+ 0.26862954,
14
+ 0.26130258,
15
+ 0.27577711
16
+ ],
17
+ "max_pixels": 401408,
18
+ "merge_size": 2,
19
+ "min_pixels": 3136,
20
+ "patch_size": 14,
21
+ "processor_class": "Qwen2_5_VLProcessor",
22
+ "resample": 3,
23
+ "rescale_factor": 0.00392156862745098,
24
+ "size": {
25
+ "longest_edge": 12845056,
26
+ "shortest_edge": 3136
27
+ },
28
+ "temporal_patch_size": 2
29
+ }
checkpoint-100/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
checkpoint-100/tokenizer_config.json ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "processor_class": "Qwen2_5_VLProcessor",
206
+ "split_special_tokens": false,
207
+ "tokenizer_class": "Qwen2Tokenizer",
208
+ "unk_token": null
209
+ }
checkpoint-100/trainer_state.json ADDED
@@ -0,0 +1,1433 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.006417455478902615,
5
+ "eval_steps": 500,
6
+ "global_step": 100,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "completion_length": 89.1796875,
13
+ "epoch": 6.417455478902615e-05,
14
+ "grad_norm": 6.457693642993236,
15
+ "kl": 0.0,
16
+ "learning_rate": 9.99967911692979e-07,
17
+ "loss": 0.0,
18
+ "reward": 2.8125,
19
+ "reward_std": 0.5811586081981659,
20
+ "rewards/accuracy_reward": 0.65625,
21
+ "rewards/format_count_numbers": 1.2265625,
22
+ "rewards/format_reward": 0.9296875,
23
+ "step": 1
24
+ },
25
+ {
26
+ "completion_length": 100.859375,
27
+ "epoch": 0.0001283491095780523,
28
+ "grad_norm": 3.7199479867427576,
29
+ "kl": 0.0006103515625,
30
+ "learning_rate": 9.999358233859582e-07,
31
+ "loss": 0.0,
32
+ "reward": 2.95703125,
33
+ "reward_std": 0.9970237612724304,
34
+ "rewards/accuracy_reward": 0.5,
35
+ "rewards/format_count_numbers": 1.53515625,
36
+ "rewards/format_reward": 0.921875,
37
+ "step": 2
38
+ },
39
+ {
40
+ "completion_length": 99.9609375,
41
+ "epoch": 0.00019252366436707844,
42
+ "grad_norm": 4.667048062421479,
43
+ "kl": 0.000865936279296875,
44
+ "learning_rate": 9.999037350789372e-07,
45
+ "loss": 0.0,
46
+ "reward": 2.75,
47
+ "reward_std": 0.6299314796924591,
48
+ "rewards/accuracy_reward": 0.3984375,
49
+ "rewards/format_count_numbers": 1.40625,
50
+ "rewards/format_reward": 0.9453125,
51
+ "step": 3
52
+ },
53
+ {
54
+ "completion_length": 105.375,
55
+ "epoch": 0.0002566982191561046,
56
+ "grad_norm": 6.61841287599563,
57
+ "kl": 0.000850677490234375,
58
+ "learning_rate": 9.998716467719162e-07,
59
+ "loss": 0.0,
60
+ "reward": 2.6484375,
61
+ "reward_std": 0.6614057421684265,
62
+ "rewards/accuracy_reward": 0.4453125,
63
+ "rewards/format_count_numbers": 1.2890625,
64
+ "rewards/format_reward": 0.9140625,
65
+ "step": 4
66
+ },
67
+ {
68
+ "completion_length": 98.4921875,
69
+ "epoch": 0.00032087277394513073,
70
+ "grad_norm": 10.226707577648735,
71
+ "kl": 0.001094818115234375,
72
+ "learning_rate": 9.998395584648954e-07,
73
+ "loss": 0.0,
74
+ "reward": 2.7734375,
75
+ "reward_std": 0.684965580701828,
76
+ "rewards/accuracy_reward": 0.53125,
77
+ "rewards/format_count_numbers": 1.3125,
78
+ "rewards/format_reward": 0.9296875,
79
+ "step": 5
80
+ },
81
+ {
82
+ "completion_length": 105.0078125,
83
+ "epoch": 0.0003850473287341569,
84
+ "grad_norm": 16.540801471606787,
85
+ "kl": 0.00214385986328125,
86
+ "learning_rate": 9.998074701578744e-07,
87
+ "loss": 0.0001,
88
+ "reward": 2.38671875,
89
+ "reward_std": 0.6537165194749832,
90
+ "rewards/accuracy_reward": 0.4140625,
91
+ "rewards/format_count_numbers": 1.08984375,
92
+ "rewards/format_reward": 0.8828125,
93
+ "step": 6
94
+ },
95
+ {
96
+ "completion_length": 96.6484375,
97
+ "epoch": 0.0004492218835231831,
98
+ "grad_norm": 4.007831804571436,
99
+ "kl": 0.003238677978515625,
100
+ "learning_rate": 9.997753818508536e-07,
101
+ "loss": 0.0001,
102
+ "reward": 2.85546875,
103
+ "reward_std": 0.5957659184932709,
104
+ "rewards/accuracy_reward": 0.6640625,
105
+ "rewards/format_count_numbers": 1.23828125,
106
+ "rewards/format_reward": 0.953125,
107
+ "step": 7
108
+ },
109
+ {
110
+ "completion_length": 94.6328125,
111
+ "epoch": 0.0005133964383122092,
112
+ "grad_norm": 3.3765246174936343,
113
+ "kl": 0.00238037109375,
114
+ "learning_rate": 9.997432935438326e-07,
115
+ "loss": 0.0001,
116
+ "reward": 3.05078125,
117
+ "reward_std": 0.5704643428325653,
118
+ "rewards/accuracy_reward": 0.515625,
119
+ "rewards/format_count_numbers": 1.58203125,
120
+ "rewards/format_reward": 0.953125,
121
+ "step": 8
122
+ },
123
+ {
124
+ "completion_length": 95.71875,
125
+ "epoch": 0.0005775709931012354,
126
+ "grad_norm": 3.445754640313553,
127
+ "kl": 0.0037994384765625,
128
+ "learning_rate": 9.997112052368116e-07,
129
+ "loss": 0.0002,
130
+ "reward": 2.921875,
131
+ "reward_std": 0.7348538041114807,
132
+ "rewards/accuracy_reward": 0.53125,
133
+ "rewards/format_count_numbers": 1.4453125,
134
+ "rewards/format_reward": 0.9453125,
135
+ "step": 9
136
+ },
137
+ {
138
+ "completion_length": 81.859375,
139
+ "epoch": 0.0006417455478902615,
140
+ "grad_norm": 13.788009049584414,
141
+ "kl": 0.00360870361328125,
142
+ "learning_rate": 9.996791169297908e-07,
143
+ "loss": 0.0001,
144
+ "reward": 2.41015625,
145
+ "reward_std": 0.3873346596956253,
146
+ "rewards/accuracy_reward": 0.46875,
147
+ "rewards/format_count_numbers": 0.97265625,
148
+ "rewards/format_reward": 0.96875,
149
+ "step": 10
150
+ },
151
+ {
152
+ "completion_length": 95.3515625,
153
+ "epoch": 0.0007059201026792877,
154
+ "grad_norm": 3.802264533705271,
155
+ "kl": 0.007354736328125,
156
+ "learning_rate": 9.996470286227698e-07,
157
+ "loss": 0.0003,
158
+ "reward": 3.0703125,
159
+ "reward_std": 0.5251666307449341,
160
+ "rewards/accuracy_reward": 0.5234375,
161
+ "rewards/format_count_numbers": 1.5546875,
162
+ "rewards/format_reward": 0.9921875,
163
+ "step": 11
164
+ },
165
+ {
166
+ "completion_length": 91.515625,
167
+ "epoch": 0.0007700946574683138,
168
+ "grad_norm": 7.025555072435911,
169
+ "kl": 0.0046234130859375,
170
+ "learning_rate": 9.996149403157488e-07,
171
+ "loss": 0.0002,
172
+ "reward": 3.0,
173
+ "reward_std": 0.433403342962265,
174
+ "rewards/accuracy_reward": 0.4765625,
175
+ "rewards/format_count_numbers": 1.5390625,
176
+ "rewards/format_reward": 0.984375,
177
+ "step": 12
178
+ },
179
+ {
180
+ "completion_length": 82.625,
181
+ "epoch": 0.00083426921225734,
182
+ "grad_norm": 8.089653038056108,
183
+ "kl": 0.0070648193359375,
184
+ "learning_rate": 9.99582852008728e-07,
185
+ "loss": 0.0003,
186
+ "reward": 3.3828125,
187
+ "reward_std": 0.47115227580070496,
188
+ "rewards/accuracy_reward": 0.6796875,
189
+ "rewards/format_count_numbers": 1.7109375,
190
+ "rewards/format_reward": 0.9921875,
191
+ "step": 13
192
+ },
193
+ {
194
+ "completion_length": 82.984375,
195
+ "epoch": 0.0008984437670463662,
196
+ "grad_norm": 2.6921754114824137,
197
+ "kl": 0.00640869140625,
198
+ "learning_rate": 9.99550763701707e-07,
199
+ "loss": 0.0003,
200
+ "reward": 3.25390625,
201
+ "reward_std": 0.37268710136413574,
202
+ "rewards/accuracy_reward": 0.734375,
203
+ "rewards/format_count_numbers": 1.53515625,
204
+ "rewards/format_reward": 0.984375,
205
+ "step": 14
206
+ },
207
+ {
208
+ "completion_length": 86.34375,
209
+ "epoch": 0.0009626183218353923,
210
+ "grad_norm": 5.3694361415616685,
211
+ "kl": 0.014495849609375,
212
+ "learning_rate": 9.995186753946862e-07,
213
+ "loss": 0.0006,
214
+ "reward": 2.9453125,
215
+ "reward_std": 0.3975609838962555,
216
+ "rewards/accuracy_reward": 0.71875,
217
+ "rewards/format_count_numbers": 1.234375,
218
+ "rewards/format_reward": 0.9921875,
219
+ "step": 15
220
+ },
221
+ {
222
+ "completion_length": 73.1171875,
223
+ "epoch": 0.0010267928766244184,
224
+ "grad_norm": 3.920415856048503,
225
+ "kl": 0.011138916015625,
226
+ "learning_rate": 9.994865870876652e-07,
227
+ "loss": 0.0004,
228
+ "reward": 3.05859375,
229
+ "reward_std": 0.3202301412820816,
230
+ "rewards/accuracy_reward": 0.640625,
231
+ "rewards/format_count_numbers": 1.42578125,
232
+ "rewards/format_reward": 0.9921875,
233
+ "step": 16
234
+ },
235
+ {
236
+ "completion_length": 77.875,
237
+ "epoch": 0.0010909674314134447,
238
+ "grad_norm": 4.105012934454526,
239
+ "kl": 0.007293701171875,
240
+ "learning_rate": 9.994544987806442e-07,
241
+ "loss": 0.0003,
242
+ "reward": 2.80859375,
243
+ "reward_std": 0.36826513707637787,
244
+ "rewards/accuracy_reward": 0.5390625,
245
+ "rewards/format_count_numbers": 1.26953125,
246
+ "rewards/format_reward": 1.0,
247
+ "step": 17
248
+ },
249
+ {
250
+ "completion_length": 74.1640625,
251
+ "epoch": 0.0011551419862024708,
252
+ "grad_norm": 3.025079315189922,
253
+ "kl": 0.009002685546875,
254
+ "learning_rate": 9.994224104736234e-07,
255
+ "loss": 0.0004,
256
+ "reward": 2.72265625,
257
+ "reward_std": 0.3272075057029724,
258
+ "rewards/accuracy_reward": 0.5625,
259
+ "rewards/format_count_numbers": 1.16015625,
260
+ "rewards/format_reward": 1.0,
261
+ "step": 18
262
+ },
263
+ {
264
+ "completion_length": 75.703125,
265
+ "epoch": 0.0012193165409914968,
266
+ "grad_norm": 2.702032953911433,
267
+ "kl": 0.0196685791015625,
268
+ "learning_rate": 9.993903221666024e-07,
269
+ "loss": 0.0008,
270
+ "reward": 2.99609375,
271
+ "reward_std": 0.35988467931747437,
272
+ "rewards/accuracy_reward": 0.6171875,
273
+ "rewards/format_count_numbers": 1.39453125,
274
+ "rewards/format_reward": 0.984375,
275
+ "step": 19
276
+ },
277
+ {
278
+ "completion_length": 72.75,
279
+ "epoch": 0.001283491095780523,
280
+ "grad_norm": 6.672377706898142,
281
+ "kl": 0.00946044921875,
282
+ "learning_rate": 9.993582338595814e-07,
283
+ "loss": 0.0004,
284
+ "reward": 2.78515625,
285
+ "reward_std": 0.3711431473493576,
286
+ "rewards/accuracy_reward": 0.6484375,
287
+ "rewards/format_count_numbers": 1.14453125,
288
+ "rewards/format_reward": 0.9921875,
289
+ "step": 20
290
+ },
291
+ {
292
+ "completion_length": 72.234375,
293
+ "epoch": 0.0013476656505695492,
294
+ "grad_norm": 3.21648017083967,
295
+ "kl": 0.01513671875,
296
+ "learning_rate": 9.993261455525607e-07,
297
+ "loss": 0.0006,
298
+ "reward": 3.3046875,
299
+ "reward_std": 0.3110102415084839,
300
+ "rewards/accuracy_reward": 0.6796875,
301
+ "rewards/format_count_numbers": 1.6484375,
302
+ "rewards/format_reward": 0.9765625,
303
+ "step": 21
304
+ },
305
+ {
306
+ "completion_length": 81.3203125,
307
+ "epoch": 0.0014118402053585753,
308
+ "grad_norm": 5.2036438638538405,
309
+ "kl": 0.020416259765625,
310
+ "learning_rate": 9.992940572455397e-07,
311
+ "loss": 0.0008,
312
+ "reward": 2.83203125,
313
+ "reward_std": 0.3504672795534134,
314
+ "rewards/accuracy_reward": 0.5390625,
315
+ "rewards/format_count_numbers": 1.30078125,
316
+ "rewards/format_reward": 0.9921875,
317
+ "step": 22
318
+ },
319
+ {
320
+ "completion_length": 77.3515625,
321
+ "epoch": 0.0014760147601476014,
322
+ "grad_norm": 4.546185134633502,
323
+ "kl": 0.013824462890625,
324
+ "learning_rate": 9.992619689385189e-07,
325
+ "loss": 0.0006,
326
+ "reward": 3.34375,
327
+ "reward_std": 0.3390200138092041,
328
+ "rewards/accuracy_reward": 0.7109375,
329
+ "rewards/format_count_numbers": 1.6328125,
330
+ "rewards/format_reward": 1.0,
331
+ "step": 23
332
+ },
333
+ {
334
+ "completion_length": 78.234375,
335
+ "epoch": 0.0015401893149366275,
336
+ "grad_norm": 3.663495400021626,
337
+ "kl": 0.015289306640625,
338
+ "learning_rate": 9.992298806314979e-07,
339
+ "loss": 0.0006,
340
+ "reward": 3.02734375,
341
+ "reward_std": 0.3106808215379715,
342
+ "rewards/accuracy_reward": 0.6171875,
343
+ "rewards/format_count_numbers": 1.41015625,
344
+ "rewards/format_reward": 1.0,
345
+ "step": 24
346
+ },
347
+ {
348
+ "completion_length": 85.5078125,
349
+ "epoch": 0.0016043638697256538,
350
+ "grad_norm": 4.017477734738997,
351
+ "kl": 0.009735107421875,
352
+ "learning_rate": 9.991977923244769e-07,
353
+ "loss": 0.0004,
354
+ "reward": 3.02734375,
355
+ "reward_std": 0.3911897838115692,
356
+ "rewards/accuracy_reward": 0.5,
357
+ "rewards/format_count_numbers": 1.55078125,
358
+ "rewards/format_reward": 0.9765625,
359
+ "step": 25
360
+ },
361
+ {
362
+ "completion_length": 70.953125,
363
+ "epoch": 0.00166853842451468,
364
+ "grad_norm": 131.7420509388314,
365
+ "kl": 0.01788330078125,
366
+ "learning_rate": 9.99165704017456e-07,
367
+ "loss": 0.0007,
368
+ "reward": 3.32421875,
369
+ "reward_std": 0.3377445787191391,
370
+ "rewards/accuracy_reward": 0.8125,
371
+ "rewards/format_count_numbers": 1.51953125,
372
+ "rewards/format_reward": 0.9921875,
373
+ "step": 26
374
+ },
375
+ {
376
+ "completion_length": 83.9140625,
377
+ "epoch": 0.001732712979303706,
378
+ "grad_norm": 8.203637941977545,
379
+ "kl": 0.012908935546875,
380
+ "learning_rate": 9.99133615710435e-07,
381
+ "loss": 0.0005,
382
+ "reward": 3.140625,
383
+ "reward_std": 0.31107497215270996,
384
+ "rewards/accuracy_reward": 0.609375,
385
+ "rewards/format_count_numbers": 1.53125,
386
+ "rewards/format_reward": 1.0,
387
+ "step": 27
388
+ },
389
+ {
390
+ "completion_length": 87.546875,
391
+ "epoch": 0.0017968875340927323,
392
+ "grad_norm": 3.074634047919227,
393
+ "kl": 0.01849365234375,
394
+ "learning_rate": 9.99101527403414e-07,
395
+ "loss": 0.0007,
396
+ "reward": 3.26171875,
397
+ "reward_std": 0.3248459994792938,
398
+ "rewards/accuracy_reward": 0.65625,
399
+ "rewards/format_count_numbers": 1.62109375,
400
+ "rewards/format_reward": 0.984375,
401
+ "step": 28
402
+ },
403
+ {
404
+ "completion_length": 83.1015625,
405
+ "epoch": 0.0018610620888817584,
406
+ "grad_norm": 1.7996263974927855,
407
+ "kl": 0.01739501953125,
408
+ "learning_rate": 9.990694390963933e-07,
409
+ "loss": 0.0007,
410
+ "reward": 3.36328125,
411
+ "reward_std": 0.34072481095790863,
412
+ "rewards/accuracy_reward": 0.703125,
413
+ "rewards/format_count_numbers": 1.67578125,
414
+ "rewards/format_reward": 0.984375,
415
+ "step": 29
416
+ },
417
+ {
418
+ "completion_length": 82.0390625,
419
+ "epoch": 0.0019252366436707845,
420
+ "grad_norm": 5.044487990967384,
421
+ "kl": 0.01666259765625,
422
+ "learning_rate": 9.990373507893723e-07,
423
+ "loss": 0.0007,
424
+ "reward": 3.1328125,
425
+ "reward_std": 0.3294168561697006,
426
+ "rewards/accuracy_reward": 0.59375,
427
+ "rewards/format_count_numbers": 1.546875,
428
+ "rewards/format_reward": 0.9921875,
429
+ "step": 30
430
+ },
431
+ {
432
+ "completion_length": 75.6640625,
433
+ "epoch": 0.0019894111984598106,
434
+ "grad_norm": 4.303535913004868,
435
+ "kl": 0.02020263671875,
436
+ "learning_rate": 9.990052624823513e-07,
437
+ "loss": 0.0008,
438
+ "reward": 3.14453125,
439
+ "reward_std": 0.3391089290380478,
440
+ "rewards/accuracy_reward": 0.71875,
441
+ "rewards/format_count_numbers": 1.43359375,
442
+ "rewards/format_reward": 0.9921875,
443
+ "step": 31
444
+ },
445
+ {
446
+ "completion_length": 91.375,
447
+ "epoch": 0.0020535857532488367,
448
+ "grad_norm": 3.867777936702832,
449
+ "kl": 0.0233154296875,
450
+ "learning_rate": 9.989731741753305e-07,
451
+ "loss": 0.0009,
452
+ "reward": 3.17578125,
453
+ "reward_std": 0.3817155063152313,
454
+ "rewards/accuracy_reward": 0.53125,
455
+ "rewards/format_count_numbers": 1.65234375,
456
+ "rewards/format_reward": 0.9921875,
457
+ "step": 32
458
+ },
459
+ {
460
+ "completion_length": 80.0859375,
461
+ "epoch": 0.002117760308037863,
462
+ "grad_norm": 5.660841872987584,
463
+ "kl": 0.0257568359375,
464
+ "learning_rate": 9.989410858683095e-07,
465
+ "loss": 0.001,
466
+ "reward": 3.13671875,
467
+ "reward_std": 0.3630076050758362,
468
+ "rewards/accuracy_reward": 0.6640625,
469
+ "rewards/format_count_numbers": 1.48046875,
470
+ "rewards/format_reward": 0.9921875,
471
+ "step": 33
472
+ },
473
+ {
474
+ "completion_length": 72.8828125,
475
+ "epoch": 0.0021819348628268893,
476
+ "grad_norm": 4.882900614418831,
477
+ "kl": 0.02276611328125,
478
+ "learning_rate": 9.989089975612887e-07,
479
+ "loss": 0.0009,
480
+ "reward": 2.640625,
481
+ "reward_std": 0.44960109889507294,
482
+ "rewards/accuracy_reward": 0.484375,
483
+ "rewards/format_count_numbers": 1.1640625,
484
+ "rewards/format_reward": 0.9921875,
485
+ "step": 34
486
+ },
487
+ {
488
+ "completion_length": 80.9296875,
489
+ "epoch": 0.0022461094176159154,
490
+ "grad_norm": 4.3133118366946475,
491
+ "kl": 0.02490234375,
492
+ "learning_rate": 9.988769092542677e-07,
493
+ "loss": 0.001,
494
+ "reward": 3.453125,
495
+ "reward_std": 0.3391571342945099,
496
+ "rewards/accuracy_reward": 0.6796875,
497
+ "rewards/format_count_numbers": 1.7734375,
498
+ "rewards/format_reward": 1.0,
499
+ "step": 35
500
+ },
501
+ {
502
+ "completion_length": 89.9609375,
503
+ "epoch": 0.0023102839724049415,
504
+ "grad_norm": 6.955721387397482,
505
+ "kl": 0.01922607421875,
506
+ "learning_rate": 9.988448209472467e-07,
507
+ "loss": 0.0008,
508
+ "reward": 2.87890625,
509
+ "reward_std": 0.2806504964828491,
510
+ "rewards/accuracy_reward": 0.4765625,
511
+ "rewards/format_count_numbers": 1.40234375,
512
+ "rewards/format_reward": 1.0,
513
+ "step": 36
514
+ },
515
+ {
516
+ "completion_length": 74.5390625,
517
+ "epoch": 0.0023744585271939676,
518
+ "grad_norm": 4.861590830565515,
519
+ "kl": 0.02423095703125,
520
+ "learning_rate": 9.988127326402257e-07,
521
+ "loss": 0.001,
522
+ "reward": 3.06640625,
523
+ "reward_std": 0.2550649642944336,
524
+ "rewards/accuracy_reward": 0.6328125,
525
+ "rewards/format_count_numbers": 1.43359375,
526
+ "rewards/format_reward": 1.0,
527
+ "step": 37
528
+ },
529
+ {
530
+ "completion_length": 73.921875,
531
+ "epoch": 0.0024386330819829937,
532
+ "grad_norm": 2.854709944808263,
533
+ "kl": 0.02410888671875,
534
+ "learning_rate": 9.98780644333205e-07,
535
+ "loss": 0.001,
536
+ "reward": 2.8984375,
537
+ "reward_std": 0.3886113613843918,
538
+ "rewards/accuracy_reward": 0.6171875,
539
+ "rewards/format_count_numbers": 1.296875,
540
+ "rewards/format_reward": 0.984375,
541
+ "step": 38
542
+ },
543
+ {
544
+ "completion_length": 70.9609375,
545
+ "epoch": 0.00250280763677202,
546
+ "grad_norm": 3.5923630444215755,
547
+ "kl": 0.0277099609375,
548
+ "learning_rate": 9.98748556026184e-07,
549
+ "loss": 0.0011,
550
+ "reward": 3.2265625,
551
+ "reward_std": 0.2659813463687897,
552
+ "rewards/accuracy_reward": 0.765625,
553
+ "rewards/format_count_numbers": 1.4609375,
554
+ "rewards/format_reward": 1.0,
555
+ "step": 39
556
+ },
557
+ {
558
+ "completion_length": 66.390625,
559
+ "epoch": 0.002566982191561046,
560
+ "grad_norm": 3.041742830092947,
561
+ "kl": 0.02459716796875,
562
+ "learning_rate": 9.987164677191631e-07,
563
+ "loss": 0.001,
564
+ "reward": 3.296875,
565
+ "reward_std": 0.2199605107307434,
566
+ "rewards/accuracy_reward": 0.7109375,
567
+ "rewards/format_count_numbers": 1.59375,
568
+ "rewards/format_reward": 0.9921875,
569
+ "step": 40
570
+ },
571
+ {
572
+ "completion_length": 74.828125,
573
+ "epoch": 0.0026311567463500724,
574
+ "grad_norm": 3.3807511168475717,
575
+ "kl": 0.0289306640625,
576
+ "learning_rate": 9.986843794121421e-07,
577
+ "loss": 0.0012,
578
+ "reward": 3.30078125,
579
+ "reward_std": 0.34865450859069824,
580
+ "rewards/accuracy_reward": 0.6015625,
581
+ "rewards/format_count_numbers": 1.69921875,
582
+ "rewards/format_reward": 1.0,
583
+ "step": 41
584
+ },
585
+ {
586
+ "completion_length": 89.6953125,
587
+ "epoch": 0.0026953313011390985,
588
+ "grad_norm": 1.9360780618011337,
589
+ "kl": 0.02545166015625,
590
+ "learning_rate": 9.986522911051214e-07,
591
+ "loss": 0.001,
592
+ "reward": 3.07421875,
593
+ "reward_std": 0.24038218706846237,
594
+ "rewards/accuracy_reward": 0.546875,
595
+ "rewards/format_count_numbers": 1.52734375,
596
+ "rewards/format_reward": 1.0,
597
+ "step": 42
598
+ },
599
+ {
600
+ "completion_length": 71.140625,
601
+ "epoch": 0.0027595058559281246,
602
+ "grad_norm": 2.522942068290189,
603
+ "kl": 0.033447265625,
604
+ "learning_rate": 9.986202027981004e-07,
605
+ "loss": 0.0013,
606
+ "reward": 3.234375,
607
+ "reward_std": 0.30629581212997437,
608
+ "rewards/accuracy_reward": 0.5234375,
609
+ "rewards/format_count_numbers": 1.7109375,
610
+ "rewards/format_reward": 1.0,
611
+ "step": 43
612
+ },
613
+ {
614
+ "completion_length": 76.5703125,
615
+ "epoch": 0.0028236804107171507,
616
+ "grad_norm": 2.7470688462972572,
617
+ "kl": 0.026123046875,
618
+ "learning_rate": 9.985881144910794e-07,
619
+ "loss": 0.001,
620
+ "reward": 3.25,
621
+ "reward_std": 0.30682672560214996,
622
+ "rewards/accuracy_reward": 0.5625,
623
+ "rewards/format_count_numbers": 1.7109375,
624
+ "rewards/format_reward": 0.9765625,
625
+ "step": 44
626
+ },
627
+ {
628
+ "completion_length": 83.8046875,
629
+ "epoch": 0.0028878549655061768,
630
+ "grad_norm": 2.4739700610037985,
631
+ "kl": 0.02978515625,
632
+ "learning_rate": 9.985560261840584e-07,
633
+ "loss": 0.0012,
634
+ "reward": 3.05078125,
635
+ "reward_std": 0.29518504440784454,
636
+ "rewards/accuracy_reward": 0.578125,
637
+ "rewards/format_count_numbers": 1.48046875,
638
+ "rewards/format_reward": 0.9921875,
639
+ "step": 45
640
+ },
641
+ {
642
+ "completion_length": 65.40625,
643
+ "epoch": 0.002952029520295203,
644
+ "grad_norm": 3.690551370084788,
645
+ "kl": 0.0428466796875,
646
+ "learning_rate": 9.985239378770376e-07,
647
+ "loss": 0.0017,
648
+ "reward": 3.17578125,
649
+ "reward_std": 0.30267418175935745,
650
+ "rewards/accuracy_reward": 0.859375,
651
+ "rewards/format_count_numbers": 1.32421875,
652
+ "rewards/format_reward": 0.9921875,
653
+ "step": 46
654
+ },
655
+ {
656
+ "completion_length": 69.03125,
657
+ "epoch": 0.003016204075084229,
658
+ "grad_norm": 4.382403144838998,
659
+ "kl": 0.0341796875,
660
+ "learning_rate": 9.984918495700166e-07,
661
+ "loss": 0.0014,
662
+ "reward": 3.484375,
663
+ "reward_std": 0.23816770315170288,
664
+ "rewards/accuracy_reward": 0.78125,
665
+ "rewards/format_count_numbers": 1.703125,
666
+ "rewards/format_reward": 1.0,
667
+ "step": 47
668
+ },
669
+ {
670
+ "completion_length": 68.015625,
671
+ "epoch": 0.003080378629873255,
672
+ "grad_norm": 3.452349900499519,
673
+ "kl": 0.0255126953125,
674
+ "learning_rate": 9.984597612629958e-07,
675
+ "loss": 0.001,
676
+ "reward": 2.97265625,
677
+ "reward_std": 0.32505670189857483,
678
+ "rewards/accuracy_reward": 0.6328125,
679
+ "rewards/format_count_numbers": 1.33984375,
680
+ "rewards/format_reward": 1.0,
681
+ "step": 48
682
+ },
683
+ {
684
+ "completion_length": 75.1953125,
685
+ "epoch": 0.0031445531846622816,
686
+ "grad_norm": 3.392241748989927,
687
+ "kl": 0.03125,
688
+ "learning_rate": 9.984276729559748e-07,
689
+ "loss": 0.0012,
690
+ "reward": 3.10546875,
691
+ "reward_std": 0.39815399050712585,
692
+ "rewards/accuracy_reward": 0.6796875,
693
+ "rewards/format_count_numbers": 1.42578125,
694
+ "rewards/format_reward": 1.0,
695
+ "step": 49
696
+ },
697
+ {
698
+ "completion_length": 67.9765625,
699
+ "epoch": 0.0032087277394513077,
700
+ "grad_norm": 2.177945178884684,
701
+ "kl": 0.047607421875,
702
+ "learning_rate": 9.98395584648954e-07,
703
+ "loss": 0.0019,
704
+ "reward": 2.953125,
705
+ "reward_std": 0.2759072184562683,
706
+ "rewards/accuracy_reward": 0.609375,
707
+ "rewards/format_count_numbers": 1.34375,
708
+ "rewards/format_reward": 1.0,
709
+ "step": 50
710
+ },
711
+ {
712
+ "completion_length": 78.390625,
713
+ "epoch": 0.0032729022942403338,
714
+ "grad_norm": 3.0857042332441456,
715
+ "kl": 0.0269775390625,
716
+ "learning_rate": 9.98363496341933e-07,
717
+ "loss": 0.0011,
718
+ "reward": 2.890625,
719
+ "reward_std": 0.27773458510637283,
720
+ "rewards/accuracy_reward": 0.4296875,
721
+ "rewards/format_count_numbers": 1.4609375,
722
+ "rewards/format_reward": 1.0,
723
+ "step": 51
724
+ },
725
+ {
726
+ "completion_length": 67.046875,
727
+ "epoch": 0.00333707684902936,
728
+ "grad_norm": 5.440745248958781,
729
+ "kl": 0.13043212890625,
730
+ "learning_rate": 9.98331408034912e-07,
731
+ "loss": 0.0052,
732
+ "reward": 2.921875,
733
+ "reward_std": 0.3226177394390106,
734
+ "rewards/accuracy_reward": 0.6015625,
735
+ "rewards/format_count_numbers": 1.3359375,
736
+ "rewards/format_reward": 0.984375,
737
+ "step": 52
738
+ },
739
+ {
740
+ "completion_length": 66.4375,
741
+ "epoch": 0.003401251403818386,
742
+ "grad_norm": 4.657297519762943,
743
+ "kl": 0.041259765625,
744
+ "learning_rate": 9.982993197278912e-07,
745
+ "loss": 0.0017,
746
+ "reward": 3.25,
747
+ "reward_std": 0.3035288602113724,
748
+ "rewards/accuracy_reward": 0.578125,
749
+ "rewards/format_count_numbers": 1.671875,
750
+ "rewards/format_reward": 1.0,
751
+ "step": 53
752
+ },
753
+ {
754
+ "completion_length": 70.2265625,
755
+ "epoch": 0.003465425958607412,
756
+ "grad_norm": 2.3261413114277727,
757
+ "kl": 0.048583984375,
758
+ "learning_rate": 9.982672314208702e-07,
759
+ "loss": 0.0019,
760
+ "reward": 3.48046875,
761
+ "reward_std": 0.2077426016330719,
762
+ "rewards/accuracy_reward": 0.65625,
763
+ "rewards/format_count_numbers": 1.82421875,
764
+ "rewards/format_reward": 1.0,
765
+ "step": 54
766
+ },
767
+ {
768
+ "completion_length": 69.4765625,
769
+ "epoch": 0.003529600513396438,
770
+ "grad_norm": 12.890917932396162,
771
+ "kl": 0.045166015625,
772
+ "learning_rate": 9.982351431138492e-07,
773
+ "loss": 0.0018,
774
+ "reward": 3.34765625,
775
+ "reward_std": 0.25980181246995926,
776
+ "rewards/accuracy_reward": 0.640625,
777
+ "rewards/format_count_numbers": 1.70703125,
778
+ "rewards/format_reward": 1.0,
779
+ "step": 55
780
+ },
781
+ {
782
+ "completion_length": 70.75,
783
+ "epoch": 0.0035937750681854647,
784
+ "grad_norm": 2.3924995403034814,
785
+ "kl": 0.0390625,
786
+ "learning_rate": 9.982030548068284e-07,
787
+ "loss": 0.0016,
788
+ "reward": 2.83203125,
789
+ "reward_std": 0.2434411644935608,
790
+ "rewards/accuracy_reward": 0.6484375,
791
+ "rewards/format_count_numbers": 1.18359375,
792
+ "rewards/format_reward": 1.0,
793
+ "step": 56
794
+ },
795
+ {
796
+ "completion_length": 78.265625,
797
+ "epoch": 0.0036579496229744908,
798
+ "grad_norm": 4.097074998616903,
799
+ "kl": 0.0467529296875,
800
+ "learning_rate": 9.981709664998074e-07,
801
+ "loss": 0.0019,
802
+ "reward": 3.16796875,
803
+ "reward_std": 0.323630690574646,
804
+ "rewards/accuracy_reward": 0.625,
805
+ "rewards/format_count_numbers": 1.54296875,
806
+ "rewards/format_reward": 1.0,
807
+ "step": 57
808
+ },
809
+ {
810
+ "completion_length": 64.4453125,
811
+ "epoch": 0.003722124177763517,
812
+ "grad_norm": 2.8596095528212815,
813
+ "kl": 0.045166015625,
814
+ "learning_rate": 9.981388781927866e-07,
815
+ "loss": 0.0018,
816
+ "reward": 2.99609375,
817
+ "reward_std": 0.3102172762155533,
818
+ "rewards/accuracy_reward": 0.5390625,
819
+ "rewards/format_count_numbers": 1.45703125,
820
+ "rewards/format_reward": 1.0,
821
+ "step": 58
822
+ },
823
+ {
824
+ "completion_length": 64.9375,
825
+ "epoch": 0.003786298732552543,
826
+ "grad_norm": 2.728196990192836,
827
+ "kl": 0.0457763671875,
828
+ "learning_rate": 9.981067898857656e-07,
829
+ "loss": 0.0018,
830
+ "reward": 2.9609375,
831
+ "reward_std": 0.2459762617945671,
832
+ "rewards/accuracy_reward": 0.609375,
833
+ "rewards/format_count_numbers": 1.3515625,
834
+ "rewards/format_reward": 1.0,
835
+ "step": 59
836
+ },
837
+ {
838
+ "completion_length": 69.0625,
839
+ "epoch": 0.003850473287341569,
840
+ "grad_norm": 3.4406926961923587,
841
+ "kl": 0.03759765625,
842
+ "learning_rate": 9.980747015787446e-07,
843
+ "loss": 0.0015,
844
+ "reward": 2.87109375,
845
+ "reward_std": 0.34723127633333206,
846
+ "rewards/accuracy_reward": 0.6640625,
847
+ "rewards/format_count_numbers": 1.21484375,
848
+ "rewards/format_reward": 0.9921875,
849
+ "step": 60
850
+ },
851
+ {
852
+ "completion_length": 66.5390625,
853
+ "epoch": 0.0039146478421305956,
854
+ "grad_norm": 3.057262479255094,
855
+ "kl": 0.043212890625,
856
+ "learning_rate": 9.980426132717238e-07,
857
+ "loss": 0.0017,
858
+ "reward": 3.38671875,
859
+ "reward_std": 0.22124166041612625,
860
+ "rewards/accuracy_reward": 0.671875,
861
+ "rewards/format_count_numbers": 1.71484375,
862
+ "rewards/format_reward": 1.0,
863
+ "step": 61
864
+ },
865
+ {
866
+ "completion_length": 84.8125,
867
+ "epoch": 0.003978822396919621,
868
+ "grad_norm": 6.416434548752605,
869
+ "kl": 0.0321044921875,
870
+ "learning_rate": 9.980105249647028e-07,
871
+ "loss": 0.0013,
872
+ "reward": 3.08984375,
873
+ "reward_std": 0.32453496754169464,
874
+ "rewards/accuracy_reward": 0.4453125,
875
+ "rewards/format_count_numbers": 1.64453125,
876
+ "rewards/format_reward": 1.0,
877
+ "step": 62
878
+ },
879
+ {
880
+ "completion_length": 77.1953125,
881
+ "epoch": 0.004042996951708648,
882
+ "grad_norm": 3.732769709996209,
883
+ "kl": 0.037841796875,
884
+ "learning_rate": 9.979784366576818e-07,
885
+ "loss": 0.0015,
886
+ "reward": 3.1015625,
887
+ "reward_std": 0.35314419865608215,
888
+ "rewards/accuracy_reward": 0.53125,
889
+ "rewards/format_count_numbers": 1.5703125,
890
+ "rewards/format_reward": 1.0,
891
+ "step": 63
892
+ },
893
+ {
894
+ "completion_length": 77.5,
895
+ "epoch": 0.004107171506497673,
896
+ "grad_norm": 2.5167684293651877,
897
+ "kl": 0.0311279296875,
898
+ "learning_rate": 9.979463483506608e-07,
899
+ "loss": 0.0012,
900
+ "reward": 3.10546875,
901
+ "reward_std": 0.2587262690067291,
902
+ "rewards/accuracy_reward": 0.5078125,
903
+ "rewards/format_count_numbers": 1.60546875,
904
+ "rewards/format_reward": 0.9921875,
905
+ "step": 64
906
+ },
907
+ {
908
+ "completion_length": 70.609375,
909
+ "epoch": 0.0041713460612867,
910
+ "grad_norm": 7.497854848230895,
911
+ "kl": 0.03466796875,
912
+ "learning_rate": 9.9791426004364e-07,
913
+ "loss": 0.0014,
914
+ "reward": 3.12109375,
915
+ "reward_std": 0.35663464665412903,
916
+ "rewards/accuracy_reward": 0.6640625,
917
+ "rewards/format_count_numbers": 1.45703125,
918
+ "rewards/format_reward": 1.0,
919
+ "step": 65
920
+ },
921
+ {
922
+ "completion_length": 67.3359375,
923
+ "epoch": 0.004235520616075726,
924
+ "grad_norm": 12.830822241443972,
925
+ "kl": 0.118408203125,
926
+ "learning_rate": 9.97882171736619e-07,
927
+ "loss": 0.0047,
928
+ "reward": 3.08984375,
929
+ "reward_std": 0.2815767228603363,
930
+ "rewards/accuracy_reward": 0.7265625,
931
+ "rewards/format_count_numbers": 1.36328125,
932
+ "rewards/format_reward": 1.0,
933
+ "step": 66
934
+ },
935
+ {
936
+ "completion_length": 80.15625,
937
+ "epoch": 0.004299695170864752,
938
+ "grad_norm": 6.252660074852895,
939
+ "kl": 0.03729248046875,
940
+ "learning_rate": 9.978500834295983e-07,
941
+ "loss": 0.0015,
942
+ "reward": 3.5703125,
943
+ "reward_std": 0.21104412525892258,
944
+ "rewards/accuracy_reward": 0.609375,
945
+ "rewards/format_count_numbers": 1.9609375,
946
+ "rewards/format_reward": 1.0,
947
+ "step": 67
948
+ },
949
+ {
950
+ "completion_length": 72.375,
951
+ "epoch": 0.004363869725653779,
952
+ "grad_norm": 2.346394602052095,
953
+ "kl": 0.025146484375,
954
+ "learning_rate": 9.978179951225773e-07,
955
+ "loss": 0.001,
956
+ "reward": 3.26171875,
957
+ "reward_std": 0.2549284026026726,
958
+ "rewards/accuracy_reward": 0.7734375,
959
+ "rewards/format_count_numbers": 1.48828125,
960
+ "rewards/format_reward": 1.0,
961
+ "step": 68
962
+ },
963
+ {
964
+ "completion_length": 80.0078125,
965
+ "epoch": 0.004428044280442804,
966
+ "grad_norm": 6.9747477147107775,
967
+ "kl": 0.053955078125,
968
+ "learning_rate": 9.977859068155565e-07,
969
+ "loss": 0.0022,
970
+ "reward": 3.1171875,
971
+ "reward_std": 0.23806139826774597,
972
+ "rewards/accuracy_reward": 0.5625,
973
+ "rewards/format_count_numbers": 1.5546875,
974
+ "rewards/format_reward": 1.0,
975
+ "step": 69
976
+ },
977
+ {
978
+ "completion_length": 76.78125,
979
+ "epoch": 0.004492218835231831,
980
+ "grad_norm": 4.378472876328936,
981
+ "kl": 0.029541015625,
982
+ "learning_rate": 9.977538185085355e-07,
983
+ "loss": 0.0012,
984
+ "reward": 2.93359375,
985
+ "reward_std": 0.19287973642349243,
986
+ "rewards/accuracy_reward": 0.609375,
987
+ "rewards/format_count_numbers": 1.33984375,
988
+ "rewards/format_reward": 0.984375,
989
+ "step": 70
990
+ },
991
+ {
992
+ "completion_length": 74.171875,
993
+ "epoch": 0.0045563933900208565,
994
+ "grad_norm": 2.358606331460238,
995
+ "kl": 0.0230712890625,
996
+ "learning_rate": 9.977217302015145e-07,
997
+ "loss": 0.0009,
998
+ "reward": 3.54296875,
999
+ "reward_std": 0.26491738110780716,
1000
+ "rewards/accuracy_reward": 0.8046875,
1001
+ "rewards/format_count_numbers": 1.73828125,
1002
+ "rewards/format_reward": 1.0,
1003
+ "step": 71
1004
+ },
1005
+ {
1006
+ "completion_length": 75.34375,
1007
+ "epoch": 0.004620567944809883,
1008
+ "grad_norm": 65.47310912953631,
1009
+ "kl": 0.03179931640625,
1010
+ "learning_rate": 9.976896418944935e-07,
1011
+ "loss": 0.0013,
1012
+ "reward": 2.78125,
1013
+ "reward_std": 0.29492397606372833,
1014
+ "rewards/accuracy_reward": 0.546875,
1015
+ "rewards/format_count_numbers": 1.234375,
1016
+ "rewards/format_reward": 1.0,
1017
+ "step": 72
1018
+ },
1019
+ {
1020
+ "completion_length": 76.921875,
1021
+ "epoch": 0.004684742499598909,
1022
+ "grad_norm": 3.27041300953387,
1023
+ "kl": 0.0367431640625,
1024
+ "learning_rate": 9.976575535874727e-07,
1025
+ "loss": 0.0015,
1026
+ "reward": 3.33203125,
1027
+ "reward_std": 0.2555892765522003,
1028
+ "rewards/accuracy_reward": 0.734375,
1029
+ "rewards/format_count_numbers": 1.59765625,
1030
+ "rewards/format_reward": 1.0,
1031
+ "step": 73
1032
+ },
1033
+ {
1034
+ "completion_length": 67.484375,
1035
+ "epoch": 0.004748917054387935,
1036
+ "grad_norm": 5.812215039650067,
1037
+ "kl": 0.03240966796875,
1038
+ "learning_rate": 9.976254652804517e-07,
1039
+ "loss": 0.0013,
1040
+ "reward": 3.43359375,
1041
+ "reward_std": 0.20885366201400757,
1042
+ "rewards/accuracy_reward": 0.8125,
1043
+ "rewards/format_count_numbers": 1.62109375,
1044
+ "rewards/format_reward": 1.0,
1045
+ "step": 74
1046
+ },
1047
+ {
1048
+ "completion_length": 82.4921875,
1049
+ "epoch": 0.004813091609176962,
1050
+ "grad_norm": 4.4277516048263506,
1051
+ "kl": 0.0313720703125,
1052
+ "learning_rate": 9.97593376973431e-07,
1053
+ "loss": 0.0013,
1054
+ "reward": 3.2734375,
1055
+ "reward_std": 0.19161942601203918,
1056
+ "rewards/accuracy_reward": 0.7109375,
1057
+ "rewards/format_count_numbers": 1.5625,
1058
+ "rewards/format_reward": 1.0,
1059
+ "step": 75
1060
+ },
1061
+ {
1062
+ "completion_length": 67.109375,
1063
+ "epoch": 0.004877266163965987,
1064
+ "grad_norm": 3.0595066417538415,
1065
+ "kl": 0.04052734375,
1066
+ "learning_rate": 9.9756128866641e-07,
1067
+ "loss": 0.0016,
1068
+ "reward": 3.5625,
1069
+ "reward_std": 0.32848016172647476,
1070
+ "rewards/accuracy_reward": 0.71875,
1071
+ "rewards/format_count_numbers": 1.84375,
1072
+ "rewards/format_reward": 1.0,
1073
+ "step": 76
1074
+ },
1075
+ {
1076
+ "completion_length": 82.9921875,
1077
+ "epoch": 0.004941440718755014,
1078
+ "grad_norm": 3.999806146457781,
1079
+ "kl": 0.0372314453125,
1080
+ "learning_rate": 9.975292003593891e-07,
1081
+ "loss": 0.0015,
1082
+ "reward": 3.0546875,
1083
+ "reward_std": 0.2797150984406471,
1084
+ "rewards/accuracy_reward": 0.4921875,
1085
+ "rewards/format_count_numbers": 1.5703125,
1086
+ "rewards/format_reward": 0.9921875,
1087
+ "step": 77
1088
+ },
1089
+ {
1090
+ "completion_length": 75.265625,
1091
+ "epoch": 0.00500561527354404,
1092
+ "grad_norm": 2.4007654591592953,
1093
+ "kl": 0.02508544921875,
1094
+ "learning_rate": 9.974971120523681e-07,
1095
+ "loss": 0.001,
1096
+ "reward": 3.30859375,
1097
+ "reward_std": 0.21722427010536194,
1098
+ "rewards/accuracy_reward": 0.7109375,
1099
+ "rewards/format_count_numbers": 1.59765625,
1100
+ "rewards/format_reward": 1.0,
1101
+ "step": 78
1102
+ },
1103
+ {
1104
+ "completion_length": 69.8671875,
1105
+ "epoch": 0.005069789828333066,
1106
+ "grad_norm": 4.413870539754506,
1107
+ "kl": 0.0401611328125,
1108
+ "learning_rate": 9.974650237453471e-07,
1109
+ "loss": 0.0016,
1110
+ "reward": 3.09765625,
1111
+ "reward_std": 0.24370676279067993,
1112
+ "rewards/accuracy_reward": 0.640625,
1113
+ "rewards/format_count_numbers": 1.46484375,
1114
+ "rewards/format_reward": 0.9921875,
1115
+ "step": 79
1116
+ },
1117
+ {
1118
+ "completion_length": 71.3828125,
1119
+ "epoch": 0.005133964383122092,
1120
+ "grad_norm": 2.7469356159448375,
1121
+ "kl": 0.03594970703125,
1122
+ "learning_rate": 9.974329354383261e-07,
1123
+ "loss": 0.0014,
1124
+ "reward": 3.359375,
1125
+ "reward_std": 0.28942976146936417,
1126
+ "rewards/accuracy_reward": 0.765625,
1127
+ "rewards/format_count_numbers": 1.59375,
1128
+ "rewards/format_reward": 1.0,
1129
+ "step": 80
1130
+ },
1131
+ {
1132
+ "completion_length": 71.6875,
1133
+ "epoch": 0.005198138937911118,
1134
+ "grad_norm": 4.694669178987162,
1135
+ "kl": 0.04248046875,
1136
+ "learning_rate": 9.974008471313053e-07,
1137
+ "loss": 0.0017,
1138
+ "reward": 3.09765625,
1139
+ "reward_std": 0.3313465863466263,
1140
+ "rewards/accuracy_reward": 0.640625,
1141
+ "rewards/format_count_numbers": 1.46484375,
1142
+ "rewards/format_reward": 0.9921875,
1143
+ "step": 81
1144
+ },
1145
+ {
1146
+ "completion_length": 71.9375,
1147
+ "epoch": 0.005262313492700145,
1148
+ "grad_norm": 5.239839542228686,
1149
+ "kl": 0.0465087890625,
1150
+ "learning_rate": 9.973687588242843e-07,
1151
+ "loss": 0.0019,
1152
+ "reward": 3.40234375,
1153
+ "reward_std": 0.2555918022990227,
1154
+ "rewards/accuracy_reward": 0.5625,
1155
+ "rewards/format_count_numbers": 1.84765625,
1156
+ "rewards/format_reward": 0.9921875,
1157
+ "step": 82
1158
+ },
1159
+ {
1160
+ "completion_length": 66.59375,
1161
+ "epoch": 0.0053264880474891705,
1162
+ "grad_norm": 9.58228205262393,
1163
+ "kl": 0.03302001953125,
1164
+ "learning_rate": 9.973366705172635e-07,
1165
+ "loss": 0.0013,
1166
+ "reward": 3.328125,
1167
+ "reward_std": 0.27802956849336624,
1168
+ "rewards/accuracy_reward": 0.7109375,
1169
+ "rewards/format_count_numbers": 1.6171875,
1170
+ "rewards/format_reward": 1.0,
1171
+ "step": 83
1172
+ },
1173
+ {
1174
+ "completion_length": 73.7734375,
1175
+ "epoch": 0.005390662602278197,
1176
+ "grad_norm": 5.487582516234903,
1177
+ "kl": 0.0311279296875,
1178
+ "learning_rate": 9.973045822102425e-07,
1179
+ "loss": 0.0012,
1180
+ "reward": 3.28515625,
1181
+ "reward_std": 0.24403482675552368,
1182
+ "rewards/accuracy_reward": 0.5625,
1183
+ "rewards/format_count_numbers": 1.72265625,
1184
+ "rewards/format_reward": 1.0,
1185
+ "step": 84
1186
+ },
1187
+ {
1188
+ "completion_length": 77.0859375,
1189
+ "epoch": 0.005454837157067223,
1190
+ "grad_norm": 2.8797110234241217,
1191
+ "kl": 0.03607177734375,
1192
+ "learning_rate": 9.972724939032218e-07,
1193
+ "loss": 0.0014,
1194
+ "reward": 3.4296875,
1195
+ "reward_std": 0.3189963102340698,
1196
+ "rewards/accuracy_reward": 0.7109375,
1197
+ "rewards/format_count_numbers": 1.734375,
1198
+ "rewards/format_reward": 0.984375,
1199
+ "step": 85
1200
+ },
1201
+ {
1202
+ "completion_length": 71.2734375,
1203
+ "epoch": 0.005519011711856249,
1204
+ "grad_norm": 3.495421949980677,
1205
+ "kl": 0.043212890625,
1206
+ "learning_rate": 9.972404055962008e-07,
1207
+ "loss": 0.0017,
1208
+ "reward": 3.0625,
1209
+ "reward_std": 0.30399875342845917,
1210
+ "rewards/accuracy_reward": 0.5859375,
1211
+ "rewards/format_count_numbers": 1.484375,
1212
+ "rewards/format_reward": 0.9921875,
1213
+ "step": 86
1214
+ },
1215
+ {
1216
+ "completion_length": 67.015625,
1217
+ "epoch": 0.005583186266645275,
1218
+ "grad_norm": 6.764316503209916,
1219
+ "kl": 0.0382080078125,
1220
+ "learning_rate": 9.972083172891798e-07,
1221
+ "loss": 0.0015,
1222
+ "reward": 2.8671875,
1223
+ "reward_std": 0.3235751837491989,
1224
+ "rewards/accuracy_reward": 0.546875,
1225
+ "rewards/format_count_numbers": 1.3359375,
1226
+ "rewards/format_reward": 0.984375,
1227
+ "step": 87
1228
+ },
1229
+ {
1230
+ "completion_length": 77.1796875,
1231
+ "epoch": 0.005647360821434301,
1232
+ "grad_norm": 2.0348391619602713,
1233
+ "kl": 0.046142578125,
1234
+ "learning_rate": 9.971762289821588e-07,
1235
+ "loss": 0.0018,
1236
+ "reward": 3.046875,
1237
+ "reward_std": 0.26907191798090935,
1238
+ "rewards/accuracy_reward": 0.609375,
1239
+ "rewards/format_count_numbers": 1.4375,
1240
+ "rewards/format_reward": 1.0,
1241
+ "step": 88
1242
+ },
1243
+ {
1244
+ "completion_length": 69.859375,
1245
+ "epoch": 0.005711535376223327,
1246
+ "grad_norm": 2.4510593826235993,
1247
+ "kl": 0.044677734375,
1248
+ "learning_rate": 9.97144140675138e-07,
1249
+ "loss": 0.0018,
1250
+ "reward": 3.40625,
1251
+ "reward_std": 0.3325708657503128,
1252
+ "rewards/accuracy_reward": 0.6953125,
1253
+ "rewards/format_count_numbers": 1.7109375,
1254
+ "rewards/format_reward": 1.0,
1255
+ "step": 89
1256
+ },
1257
+ {
1258
+ "completion_length": 69.421875,
1259
+ "epoch": 0.0057757099310123535,
1260
+ "grad_norm": 7.386556285996494,
1261
+ "kl": 0.0384521484375,
1262
+ "learning_rate": 9.97112052368117e-07,
1263
+ "loss": 0.0015,
1264
+ "reward": 3.45703125,
1265
+ "reward_std": 0.18665644526481628,
1266
+ "rewards/accuracy_reward": 0.609375,
1267
+ "rewards/format_count_numbers": 1.84765625,
1268
+ "rewards/format_reward": 1.0,
1269
+ "step": 90
1270
+ },
1271
+ {
1272
+ "completion_length": 76.546875,
1273
+ "epoch": 0.00583988448580138,
1274
+ "grad_norm": 10.07527340286235,
1275
+ "kl": 0.03741455078125,
1276
+ "learning_rate": 9.97079964061096e-07,
1277
+ "loss": 0.0015,
1278
+ "reward": 3.4765625,
1279
+ "reward_std": 0.17688900232315063,
1280
+ "rewards/accuracy_reward": 0.75,
1281
+ "rewards/format_count_numbers": 1.7265625,
1282
+ "rewards/format_reward": 1.0,
1283
+ "step": 91
1284
+ },
1285
+ {
1286
+ "completion_length": 67.1015625,
1287
+ "epoch": 0.005904059040590406,
1288
+ "grad_norm": 6.961725253066966,
1289
+ "kl": 0.0450439453125,
1290
+ "learning_rate": 9.970478757540752e-07,
1291
+ "loss": 0.0018,
1292
+ "reward": 3.15234375,
1293
+ "reward_std": 0.18702887743711472,
1294
+ "rewards/accuracy_reward": 0.8046875,
1295
+ "rewards/format_count_numbers": 1.34765625,
1296
+ "rewards/format_reward": 1.0,
1297
+ "step": 92
1298
+ },
1299
+ {
1300
+ "completion_length": 67.75,
1301
+ "epoch": 0.005968233595379432,
1302
+ "grad_norm": 4.665158893240586,
1303
+ "kl": 0.0504150390625,
1304
+ "learning_rate": 9.970157874470542e-07,
1305
+ "loss": 0.002,
1306
+ "reward": 3.32421875,
1307
+ "reward_std": 0.17975258082151413,
1308
+ "rewards/accuracy_reward": 0.71875,
1309
+ "rewards/format_count_numbers": 1.61328125,
1310
+ "rewards/format_reward": 0.9921875,
1311
+ "step": 93
1312
+ },
1313
+ {
1314
+ "completion_length": 62.765625,
1315
+ "epoch": 0.006032408150168458,
1316
+ "grad_norm": 6.052438787803174,
1317
+ "kl": 0.0577392578125,
1318
+ "learning_rate": 9.969836991400334e-07,
1319
+ "loss": 0.0023,
1320
+ "reward": 2.96484375,
1321
+ "reward_std": 0.17256294190883636,
1322
+ "rewards/accuracy_reward": 0.6171875,
1323
+ "rewards/format_count_numbers": 1.35546875,
1324
+ "rewards/format_reward": 0.9921875,
1325
+ "step": 94
1326
+ },
1327
+ {
1328
+ "completion_length": 67.546875,
1329
+ "epoch": 0.0060965827049574844,
1330
+ "grad_norm": 3.8543628664738248,
1331
+ "kl": 0.1171875,
1332
+ "learning_rate": 9.969516108330124e-07,
1333
+ "loss": 0.0047,
1334
+ "reward": 2.75,
1335
+ "reward_std": 0.25491149723529816,
1336
+ "rewards/accuracy_reward": 0.5390625,
1337
+ "rewards/format_count_numbers": 1.21875,
1338
+ "rewards/format_reward": 0.9921875,
1339
+ "step": 95
1340
+ },
1341
+ {
1342
+ "completion_length": 57.5234375,
1343
+ "epoch": 0.00616075725974651,
1344
+ "grad_norm": 10.068717750488322,
1345
+ "kl": 0.050048828125,
1346
+ "learning_rate": 9.969195225259914e-07,
1347
+ "loss": 0.002,
1348
+ "reward": 3.34765625,
1349
+ "reward_std": 0.15529648214578629,
1350
+ "rewards/accuracy_reward": 0.859375,
1351
+ "rewards/format_count_numbers": 1.49609375,
1352
+ "rewards/format_reward": 0.9921875,
1353
+ "step": 96
1354
+ },
1355
+ {
1356
+ "completion_length": 77.4140625,
1357
+ "epoch": 0.006224931814535537,
1358
+ "grad_norm": 76.26414395404969,
1359
+ "kl": 0.0400390625,
1360
+ "learning_rate": 9.968874342189706e-07,
1361
+ "loss": 0.0016,
1362
+ "reward": 3.3046875,
1363
+ "reward_std": 0.18849123269319534,
1364
+ "rewards/accuracy_reward": 0.6015625,
1365
+ "rewards/format_count_numbers": 1.7109375,
1366
+ "rewards/format_reward": 0.9921875,
1367
+ "step": 97
1368
+ },
1369
+ {
1370
+ "completion_length": 64.359375,
1371
+ "epoch": 0.006289106369324563,
1372
+ "grad_norm": 6.324698594548965,
1373
+ "kl": 0.05126953125,
1374
+ "learning_rate": 9.968553459119496e-07,
1375
+ "loss": 0.0021,
1376
+ "reward": 3.09765625,
1377
+ "reward_std": 0.16071559116244316,
1378
+ "rewards/accuracy_reward": 0.7578125,
1379
+ "rewards/format_count_numbers": 1.34765625,
1380
+ "rewards/format_reward": 0.9921875,
1381
+ "step": 98
1382
+ },
1383
+ {
1384
+ "completion_length": 69.578125,
1385
+ "epoch": 0.006353280924113589,
1386
+ "grad_norm": 2.6642177820540494,
1387
+ "kl": 0.05078125,
1388
+ "learning_rate": 9.968232576049286e-07,
1389
+ "loss": 0.002,
1390
+ "reward": 3.20703125,
1391
+ "reward_std": 0.19081907719373703,
1392
+ "rewards/accuracy_reward": 0.6328125,
1393
+ "rewards/format_count_numbers": 1.57421875,
1394
+ "rewards/format_reward": 1.0,
1395
+ "step": 99
1396
+ },
1397
+ {
1398
+ "completion_length": 69.6171875,
1399
+ "epoch": 0.006417455478902615,
1400
+ "grad_norm": 3.1800877639787006,
1401
+ "kl": 0.04925537109375,
1402
+ "learning_rate": 9.967911692979078e-07,
1403
+ "loss": 0.002,
1404
+ "reward": 3.15625,
1405
+ "reward_std": 0.25464994460344315,
1406
+ "rewards/accuracy_reward": 0.6875,
1407
+ "rewards/format_count_numbers": 1.46875,
1408
+ "rewards/format_reward": 1.0,
1409
+ "step": 100
1410
+ }
1411
+ ],
1412
+ "logging_steps": 1.0,
1413
+ "max_steps": 31164,
1414
+ "num_input_tokens_seen": 0,
1415
+ "num_train_epochs": 2,
1416
+ "save_steps": 100,
1417
+ "stateful_callbacks": {
1418
+ "TrainerControl": {
1419
+ "args": {
1420
+ "should_epoch_stop": false,
1421
+ "should_evaluate": false,
1422
+ "should_log": false,
1423
+ "should_save": true,
1424
+ "should_training_stop": false
1425
+ },
1426
+ "attributes": {}
1427
+ }
1428
+ },
1429
+ "total_flos": 0.0,
1430
+ "train_batch_size": 1,
1431
+ "trial_name": null,
1432
+ "trial_params": null
1433
+ }
checkpoint-100/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1100/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-1200/tokenizer_config.json ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "processor_class": "Qwen2_5_VLProcessor",
206
+ "split_special_tokens": false,
207
+ "tokenizer_class": "Qwen2Tokenizer",
208
+ "unk_token": null
209
+ }
checkpoint-1300/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-1300/config.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-VL-3B-Instruct",
3
+ "architectures": [
4
+ "Qwen2_5_VLForConditionalGeneration"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 2048,
11
+ "image_token_id": 151655,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 11008,
14
+ "max_position_embeddings": 128000,
15
+ "max_window_layers": 70,
16
+ "model_type": "qwen2_5_vl",
17
+ "num_attention_heads": 16,
18
+ "num_hidden_layers": 36,
19
+ "num_key_value_heads": 2,
20
+ "rms_norm_eps": 1e-06,
21
+ "rope_scaling": {
22
+ "mrope_section": [
23
+ 16,
24
+ 24,
25
+ 24
26
+ ],
27
+ "rope_type": "default",
28
+ "type": "default"
29
+ },
30
+ "rope_theta": 1000000.0,
31
+ "sliding_window": 32768,
32
+ "tie_word_embeddings": true,
33
+ "torch_dtype": "bfloat16",
34
+ "transformers_version": "4.50.0.dev0",
35
+ "use_cache": false,
36
+ "use_sliding_window": false,
37
+ "video_token_id": 151656,
38
+ "vision_config": {
39
+ "hidden_size": 1280,
40
+ "in_chans": 3,
41
+ "model_type": "qwen2_5_vl",
42
+ "out_hidden_size": 2048,
43
+ "spatial_patch_size": 14,
44
+ "tokens_per_second": 2,
45
+ "torch_dtype": "float32"
46
+ },
47
+ "vision_end_token_id": 151653,
48
+ "vision_start_token_id": 151652,
49
+ "vision_token_id": 151654,
50
+ "vocab_size": 151936
51
+ }
checkpoint-1300/generation_config.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "attn_implementation": "flash_attention_2",
3
+ "bos_token_id": 151643,
4
+ "do_sample": true,
5
+ "eos_token_id": [
6
+ 151645,
7
+ 151643
8
+ ],
9
+ "pad_token_id": 151643,
10
+ "repetition_penalty": 1.05,
11
+ "temperature": 0.1,
12
+ "top_k": 1,
13
+ "top_p": 0.001,
14
+ "transformers_version": "4.50.0.dev0",
15
+ "use_cache": false
16
+ }
checkpoint-1300/model.safetensors.index.json ADDED
@@ -0,0 +1,831 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 7509245952
4
+ },
5
+ "weight_map": {
6
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
7
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
17
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
18
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
19
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
26
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
28
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
30
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
31
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
37
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
38
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
40
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
42
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
49
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
50
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
52
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
53
+ "model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
54
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
55
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
61
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
62
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
64
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
65
+ "model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
66
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
67
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
73
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
74
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
76
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
77
+ "model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
78
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
79
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
85
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
86
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
88
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
89
+ "model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
90
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
91
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
97
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
98
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
100
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
101
+ "model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
102
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
103
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
109
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
110
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
112
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
113
+ "model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
114
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
115
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
121
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
122
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
124
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
125
+ "model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
126
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
127
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
129
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
133
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
134
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
135
+ "model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
136
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
137
+ "model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
138
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
139
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00002.safetensors",
140
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
141
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
142
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
143
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
144
+ "model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
145
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
146
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
147
+ "model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
148
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
149
+ "model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
150
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
151
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
152
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
153
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
154
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
155
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
156
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
157
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
158
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
159
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
160
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
161
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
162
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
163
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
164
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
165
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
166
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
167
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
168
+ "model.layers.20.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
169
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
170
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
171
+ "model.layers.20.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
172
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
173
+ "model.layers.20.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
174
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
175
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
176
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
177
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
178
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
179
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
180
+ "model.layers.21.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
181
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
182
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
183
+ "model.layers.21.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
184
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
185
+ "model.layers.21.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
186
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
187
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
188
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
189
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
190
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
191
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
192
+ "model.layers.22.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
193
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
194
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
195
+ "model.layers.22.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
196
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
197
+ "model.layers.22.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
198
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
199
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
200
+ "model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
201
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
202
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
203
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
204
+ "model.layers.23.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
205
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
206
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
207
+ "model.layers.23.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
208
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
209
+ "model.layers.23.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
210
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
211
+ "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
212
+ "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
213
+ "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
214
+ "model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
215
+ "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
216
+ "model.layers.24.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
217
+ "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
218
+ "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
219
+ "model.layers.24.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
220
+ "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
221
+ "model.layers.24.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
222
+ "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
223
+ "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
224
+ "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
225
+ "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
226
+ "model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
227
+ "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
228
+ "model.layers.25.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
229
+ "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
230
+ "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
231
+ "model.layers.25.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
232
+ "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
233
+ "model.layers.25.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
234
+ "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
235
+ "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
236
+ "model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
237
+ "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
238
+ "model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
239
+ "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
240
+ "model.layers.26.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
241
+ "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
242
+ "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
243
+ "model.layers.26.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
244
+ "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
245
+ "model.layers.26.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
246
+ "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
247
+ "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
248
+ "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
249
+ "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
250
+ "model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
251
+ "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
252
+ "model.layers.27.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
253
+ "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
254
+ "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
255
+ "model.layers.27.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
256
+ "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
257
+ "model.layers.27.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
258
+ "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
259
+ "model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
260
+ "model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
261
+ "model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
262
+ "model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
263
+ "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
264
+ "model.layers.28.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
265
+ "model.layers.28.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
266
+ "model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
267
+ "model.layers.28.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
268
+ "model.layers.28.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
269
+ "model.layers.28.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
270
+ "model.layers.28.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
271
+ "model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
272
+ "model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
273
+ "model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
274
+ "model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
275
+ "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
276
+ "model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
277
+ "model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
278
+ "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
279
+ "model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
280
+ "model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
281
+ "model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
282
+ "model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
283
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
284
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
285
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
286
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
287
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
288
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
289
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
290
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
291
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
292
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
293
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
294
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
295
+ "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
296
+ "model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
297
+ "model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
298
+ "model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
299
+ "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
300
+ "model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
301
+ "model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
302
+ "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
303
+ "model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
304
+ "model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
305
+ "model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
306
+ "model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
307
+ "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
308
+ "model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
309
+ "model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
310
+ "model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
311
+ "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
312
+ "model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
313
+ "model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
314
+ "model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
315
+ "model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
316
+ "model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
317
+ "model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
318
+ "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
319
+ "model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
320
+ "model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
321
+ "model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
322
+ "model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
323
+ "model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
324
+ "model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
325
+ "model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
326
+ "model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
327
+ "model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
328
+ "model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
329
+ "model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
330
+ "model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
331
+ "model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
332
+ "model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
333
+ "model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
334
+ "model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
335
+ "model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
336
+ "model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
337
+ "model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
338
+ "model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
339
+ "model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
340
+ "model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
341
+ "model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
342
+ "model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
343
+ "model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
344
+ "model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
345
+ "model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
346
+ "model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
347
+ "model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
348
+ "model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
349
+ "model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
350
+ "model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
351
+ "model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
352
+ "model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
353
+ "model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
354
+ "model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
355
+ "model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
356
+ "model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
357
+ "model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
358
+ "model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
359
+ "model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
360
+ "model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
361
+ "model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
362
+ "model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
363
+ "model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
364
+ "model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
365
+ "model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
366
+ "model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
367
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
368
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
369
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
370
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
371
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
372
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
373
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
374
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
375
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
376
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
377
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
378
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
379
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
380
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
381
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
382
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
383
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
384
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
385
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
386
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
387
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
388
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
389
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
390
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
391
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
392
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
393
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
394
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
395
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
396
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
397
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
398
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
399
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
400
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
401
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
402
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
403
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
404
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
405
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
406
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
407
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
408
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
409
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
410
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
411
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
412
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
413
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
414
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
415
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
416
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
417
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
418
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
419
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
420
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
421
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
422
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
423
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
424
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
425
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
426
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
427
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
428
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
429
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
430
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
431
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
432
+ "model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
433
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
434
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
435
+ "model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
436
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
437
+ "model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
438
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
439
+ "model.norm.weight": "model-00002-of-00002.safetensors",
440
+ "visual.blocks.0.attn.proj.bias": "model-00001-of-00002.safetensors",
441
+ "visual.blocks.0.attn.proj.weight": "model-00001-of-00002.safetensors",
442
+ "visual.blocks.0.attn.qkv.bias": "model-00001-of-00002.safetensors",
443
+ "visual.blocks.0.attn.qkv.weight": "model-00001-of-00002.safetensors",
444
+ "visual.blocks.0.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
445
+ "visual.blocks.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
446
+ "visual.blocks.0.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
447
+ "visual.blocks.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
448
+ "visual.blocks.0.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
449
+ "visual.blocks.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
450
+ "visual.blocks.0.norm1.weight": "model-00001-of-00002.safetensors",
451
+ "visual.blocks.0.norm2.weight": "model-00001-of-00002.safetensors",
452
+ "visual.blocks.1.attn.proj.bias": "model-00001-of-00002.safetensors",
453
+ "visual.blocks.1.attn.proj.weight": "model-00001-of-00002.safetensors",
454
+ "visual.blocks.1.attn.qkv.bias": "model-00001-of-00002.safetensors",
455
+ "visual.blocks.1.attn.qkv.weight": "model-00001-of-00002.safetensors",
456
+ "visual.blocks.1.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
457
+ "visual.blocks.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
458
+ "visual.blocks.1.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
459
+ "visual.blocks.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
460
+ "visual.blocks.1.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
461
+ "visual.blocks.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
462
+ "visual.blocks.1.norm1.weight": "model-00001-of-00002.safetensors",
463
+ "visual.blocks.1.norm2.weight": "model-00001-of-00002.safetensors",
464
+ "visual.blocks.10.attn.proj.bias": "model-00001-of-00002.safetensors",
465
+ "visual.blocks.10.attn.proj.weight": "model-00001-of-00002.safetensors",
466
+ "visual.blocks.10.attn.qkv.bias": "model-00001-of-00002.safetensors",
467
+ "visual.blocks.10.attn.qkv.weight": "model-00001-of-00002.safetensors",
468
+ "visual.blocks.10.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
469
+ "visual.blocks.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
470
+ "visual.blocks.10.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
471
+ "visual.blocks.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
472
+ "visual.blocks.10.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
473
+ "visual.blocks.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
474
+ "visual.blocks.10.norm1.weight": "model-00001-of-00002.safetensors",
475
+ "visual.blocks.10.norm2.weight": "model-00001-of-00002.safetensors",
476
+ "visual.blocks.11.attn.proj.bias": "model-00001-of-00002.safetensors",
477
+ "visual.blocks.11.attn.proj.weight": "model-00001-of-00002.safetensors",
478
+ "visual.blocks.11.attn.qkv.bias": "model-00001-of-00002.safetensors",
479
+ "visual.blocks.11.attn.qkv.weight": "model-00001-of-00002.safetensors",
480
+ "visual.blocks.11.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
481
+ "visual.blocks.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
482
+ "visual.blocks.11.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
483
+ "visual.blocks.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
484
+ "visual.blocks.11.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
485
+ "visual.blocks.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
486
+ "visual.blocks.11.norm1.weight": "model-00001-of-00002.safetensors",
487
+ "visual.blocks.11.norm2.weight": "model-00001-of-00002.safetensors",
488
+ "visual.blocks.12.attn.proj.bias": "model-00001-of-00002.safetensors",
489
+ "visual.blocks.12.attn.proj.weight": "model-00001-of-00002.safetensors",
490
+ "visual.blocks.12.attn.qkv.bias": "model-00001-of-00002.safetensors",
491
+ "visual.blocks.12.attn.qkv.weight": "model-00001-of-00002.safetensors",
492
+ "visual.blocks.12.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
493
+ "visual.blocks.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
494
+ "visual.blocks.12.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
495
+ "visual.blocks.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
496
+ "visual.blocks.12.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
497
+ "visual.blocks.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
498
+ "visual.blocks.12.norm1.weight": "model-00001-of-00002.safetensors",
499
+ "visual.blocks.12.norm2.weight": "model-00001-of-00002.safetensors",
500
+ "visual.blocks.13.attn.proj.bias": "model-00001-of-00002.safetensors",
501
+ "visual.blocks.13.attn.proj.weight": "model-00001-of-00002.safetensors",
502
+ "visual.blocks.13.attn.qkv.bias": "model-00001-of-00002.safetensors",
503
+ "visual.blocks.13.attn.qkv.weight": "model-00001-of-00002.safetensors",
504
+ "visual.blocks.13.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
505
+ "visual.blocks.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
506
+ "visual.blocks.13.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
507
+ "visual.blocks.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
508
+ "visual.blocks.13.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
509
+ "visual.blocks.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
510
+ "visual.blocks.13.norm1.weight": "model-00001-of-00002.safetensors",
511
+ "visual.blocks.13.norm2.weight": "model-00001-of-00002.safetensors",
512
+ "visual.blocks.14.attn.proj.bias": "model-00001-of-00002.safetensors",
513
+ "visual.blocks.14.attn.proj.weight": "model-00001-of-00002.safetensors",
514
+ "visual.blocks.14.attn.qkv.bias": "model-00001-of-00002.safetensors",
515
+ "visual.blocks.14.attn.qkv.weight": "model-00001-of-00002.safetensors",
516
+ "visual.blocks.14.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
517
+ "visual.blocks.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
518
+ "visual.blocks.14.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
519
+ "visual.blocks.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
520
+ "visual.blocks.14.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
521
+ "visual.blocks.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
522
+ "visual.blocks.14.norm1.weight": "model-00001-of-00002.safetensors",
523
+ "visual.blocks.14.norm2.weight": "model-00001-of-00002.safetensors",
524
+ "visual.blocks.15.attn.proj.bias": "model-00001-of-00002.safetensors",
525
+ "visual.blocks.15.attn.proj.weight": "model-00001-of-00002.safetensors",
526
+ "visual.blocks.15.attn.qkv.bias": "model-00001-of-00002.safetensors",
527
+ "visual.blocks.15.attn.qkv.weight": "model-00001-of-00002.safetensors",
528
+ "visual.blocks.15.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
529
+ "visual.blocks.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
530
+ "visual.blocks.15.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
531
+ "visual.blocks.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
532
+ "visual.blocks.15.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
533
+ "visual.blocks.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
534
+ "visual.blocks.15.norm1.weight": "model-00001-of-00002.safetensors",
535
+ "visual.blocks.15.norm2.weight": "model-00001-of-00002.safetensors",
536
+ "visual.blocks.16.attn.proj.bias": "model-00001-of-00002.safetensors",
537
+ "visual.blocks.16.attn.proj.weight": "model-00001-of-00002.safetensors",
538
+ "visual.blocks.16.attn.qkv.bias": "model-00001-of-00002.safetensors",
539
+ "visual.blocks.16.attn.qkv.weight": "model-00001-of-00002.safetensors",
540
+ "visual.blocks.16.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
541
+ "visual.blocks.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
542
+ "visual.blocks.16.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
543
+ "visual.blocks.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
544
+ "visual.blocks.16.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
545
+ "visual.blocks.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
546
+ "visual.blocks.16.norm1.weight": "model-00001-of-00002.safetensors",
547
+ "visual.blocks.16.norm2.weight": "model-00001-of-00002.safetensors",
548
+ "visual.blocks.17.attn.proj.bias": "model-00001-of-00002.safetensors",
549
+ "visual.blocks.17.attn.proj.weight": "model-00001-of-00002.safetensors",
550
+ "visual.blocks.17.attn.qkv.bias": "model-00001-of-00002.safetensors",
551
+ "visual.blocks.17.attn.qkv.weight": "model-00001-of-00002.safetensors",
552
+ "visual.blocks.17.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
553
+ "visual.blocks.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
554
+ "visual.blocks.17.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
555
+ "visual.blocks.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
556
+ "visual.blocks.17.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
557
+ "visual.blocks.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
558
+ "visual.blocks.17.norm1.weight": "model-00001-of-00002.safetensors",
559
+ "visual.blocks.17.norm2.weight": "model-00001-of-00002.safetensors",
560
+ "visual.blocks.18.attn.proj.bias": "model-00001-of-00002.safetensors",
561
+ "visual.blocks.18.attn.proj.weight": "model-00001-of-00002.safetensors",
562
+ "visual.blocks.18.attn.qkv.bias": "model-00001-of-00002.safetensors",
563
+ "visual.blocks.18.attn.qkv.weight": "model-00001-of-00002.safetensors",
564
+ "visual.blocks.18.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
565
+ "visual.blocks.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
566
+ "visual.blocks.18.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
567
+ "visual.blocks.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
568
+ "visual.blocks.18.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
569
+ "visual.blocks.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
570
+ "visual.blocks.18.norm1.weight": "model-00001-of-00002.safetensors",
571
+ "visual.blocks.18.norm2.weight": "model-00001-of-00002.safetensors",
572
+ "visual.blocks.19.attn.proj.bias": "model-00001-of-00002.safetensors",
573
+ "visual.blocks.19.attn.proj.weight": "model-00001-of-00002.safetensors",
574
+ "visual.blocks.19.attn.qkv.bias": "model-00001-of-00002.safetensors",
575
+ "visual.blocks.19.attn.qkv.weight": "model-00001-of-00002.safetensors",
576
+ "visual.blocks.19.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
577
+ "visual.blocks.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
578
+ "visual.blocks.19.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
579
+ "visual.blocks.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
580
+ "visual.blocks.19.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
581
+ "visual.blocks.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
582
+ "visual.blocks.19.norm1.weight": "model-00001-of-00002.safetensors",
583
+ "visual.blocks.19.norm2.weight": "model-00001-of-00002.safetensors",
584
+ "visual.blocks.2.attn.proj.bias": "model-00001-of-00002.safetensors",
585
+ "visual.blocks.2.attn.proj.weight": "model-00001-of-00002.safetensors",
586
+ "visual.blocks.2.attn.qkv.bias": "model-00001-of-00002.safetensors",
587
+ "visual.blocks.2.attn.qkv.weight": "model-00001-of-00002.safetensors",
588
+ "visual.blocks.2.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
589
+ "visual.blocks.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
590
+ "visual.blocks.2.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
591
+ "visual.blocks.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
592
+ "visual.blocks.2.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
593
+ "visual.blocks.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
594
+ "visual.blocks.2.norm1.weight": "model-00001-of-00002.safetensors",
595
+ "visual.blocks.2.norm2.weight": "model-00001-of-00002.safetensors",
596
+ "visual.blocks.20.attn.proj.bias": "model-00001-of-00002.safetensors",
597
+ "visual.blocks.20.attn.proj.weight": "model-00001-of-00002.safetensors",
598
+ "visual.blocks.20.attn.qkv.bias": "model-00001-of-00002.safetensors",
599
+ "visual.blocks.20.attn.qkv.weight": "model-00001-of-00002.safetensors",
600
+ "visual.blocks.20.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
601
+ "visual.blocks.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
602
+ "visual.blocks.20.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
603
+ "visual.blocks.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
604
+ "visual.blocks.20.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
605
+ "visual.blocks.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
606
+ "visual.blocks.20.norm1.weight": "model-00001-of-00002.safetensors",
607
+ "visual.blocks.20.norm2.weight": "model-00001-of-00002.safetensors",
608
+ "visual.blocks.21.attn.proj.bias": "model-00001-of-00002.safetensors",
609
+ "visual.blocks.21.attn.proj.weight": "model-00001-of-00002.safetensors",
610
+ "visual.blocks.21.attn.qkv.bias": "model-00001-of-00002.safetensors",
611
+ "visual.blocks.21.attn.qkv.weight": "model-00001-of-00002.safetensors",
612
+ "visual.blocks.21.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
613
+ "visual.blocks.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
614
+ "visual.blocks.21.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
615
+ "visual.blocks.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
616
+ "visual.blocks.21.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
617
+ "visual.blocks.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
618
+ "visual.blocks.21.norm1.weight": "model-00001-of-00002.safetensors",
619
+ "visual.blocks.21.norm2.weight": "model-00001-of-00002.safetensors",
620
+ "visual.blocks.22.attn.proj.bias": "model-00001-of-00002.safetensors",
621
+ "visual.blocks.22.attn.proj.weight": "model-00001-of-00002.safetensors",
622
+ "visual.blocks.22.attn.qkv.bias": "model-00001-of-00002.safetensors",
623
+ "visual.blocks.22.attn.qkv.weight": "model-00001-of-00002.safetensors",
624
+ "visual.blocks.22.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
625
+ "visual.blocks.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
626
+ "visual.blocks.22.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
627
+ "visual.blocks.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
628
+ "visual.blocks.22.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
629
+ "visual.blocks.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
630
+ "visual.blocks.22.norm1.weight": "model-00001-of-00002.safetensors",
631
+ "visual.blocks.22.norm2.weight": "model-00001-of-00002.safetensors",
632
+ "visual.blocks.23.attn.proj.bias": "model-00001-of-00002.safetensors",
633
+ "visual.blocks.23.attn.proj.weight": "model-00001-of-00002.safetensors",
634
+ "visual.blocks.23.attn.qkv.bias": "model-00001-of-00002.safetensors",
635
+ "visual.blocks.23.attn.qkv.weight": "model-00001-of-00002.safetensors",
636
+ "visual.blocks.23.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
637
+ "visual.blocks.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
638
+ "visual.blocks.23.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
639
+ "visual.blocks.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
640
+ "visual.blocks.23.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
641
+ "visual.blocks.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
642
+ "visual.blocks.23.norm1.weight": "model-00001-of-00002.safetensors",
643
+ "visual.blocks.23.norm2.weight": "model-00001-of-00002.safetensors",
644
+ "visual.blocks.24.attn.proj.bias": "model-00001-of-00002.safetensors",
645
+ "visual.blocks.24.attn.proj.weight": "model-00001-of-00002.safetensors",
646
+ "visual.blocks.24.attn.qkv.bias": "model-00001-of-00002.safetensors",
647
+ "visual.blocks.24.attn.qkv.weight": "model-00001-of-00002.safetensors",
648
+ "visual.blocks.24.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
649
+ "visual.blocks.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
650
+ "visual.blocks.24.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
651
+ "visual.blocks.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
652
+ "visual.blocks.24.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
653
+ "visual.blocks.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
654
+ "visual.blocks.24.norm1.weight": "model-00001-of-00002.safetensors",
655
+ "visual.blocks.24.norm2.weight": "model-00001-of-00002.safetensors",
656
+ "visual.blocks.25.attn.proj.bias": "model-00001-of-00002.safetensors",
657
+ "visual.blocks.25.attn.proj.weight": "model-00001-of-00002.safetensors",
658
+ "visual.blocks.25.attn.qkv.bias": "model-00001-of-00002.safetensors",
659
+ "visual.blocks.25.attn.qkv.weight": "model-00001-of-00002.safetensors",
660
+ "visual.blocks.25.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
661
+ "visual.blocks.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
662
+ "visual.blocks.25.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
663
+ "visual.blocks.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
664
+ "visual.blocks.25.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
665
+ "visual.blocks.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
666
+ "visual.blocks.25.norm1.weight": "model-00001-of-00002.safetensors",
667
+ "visual.blocks.25.norm2.weight": "model-00001-of-00002.safetensors",
668
+ "visual.blocks.26.attn.proj.bias": "model-00001-of-00002.safetensors",
669
+ "visual.blocks.26.attn.proj.weight": "model-00001-of-00002.safetensors",
670
+ "visual.blocks.26.attn.qkv.bias": "model-00001-of-00002.safetensors",
671
+ "visual.blocks.26.attn.qkv.weight": "model-00001-of-00002.safetensors",
672
+ "visual.blocks.26.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
673
+ "visual.blocks.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
674
+ "visual.blocks.26.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
675
+ "visual.blocks.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
676
+ "visual.blocks.26.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
677
+ "visual.blocks.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
678
+ "visual.blocks.26.norm1.weight": "model-00001-of-00002.safetensors",
679
+ "visual.blocks.26.norm2.weight": "model-00001-of-00002.safetensors",
680
+ "visual.blocks.27.attn.proj.bias": "model-00001-of-00002.safetensors",
681
+ "visual.blocks.27.attn.proj.weight": "model-00001-of-00002.safetensors",
682
+ "visual.blocks.27.attn.qkv.bias": "model-00001-of-00002.safetensors",
683
+ "visual.blocks.27.attn.qkv.weight": "model-00001-of-00002.safetensors",
684
+ "visual.blocks.27.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
685
+ "visual.blocks.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
686
+ "visual.blocks.27.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
687
+ "visual.blocks.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
688
+ "visual.blocks.27.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
689
+ "visual.blocks.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
690
+ "visual.blocks.27.norm1.weight": "model-00001-of-00002.safetensors",
691
+ "visual.blocks.27.norm2.weight": "model-00001-of-00002.safetensors",
692
+ "visual.blocks.28.attn.proj.bias": "model-00001-of-00002.safetensors",
693
+ "visual.blocks.28.attn.proj.weight": "model-00001-of-00002.safetensors",
694
+ "visual.blocks.28.attn.qkv.bias": "model-00001-of-00002.safetensors",
695
+ "visual.blocks.28.attn.qkv.weight": "model-00001-of-00002.safetensors",
696
+ "visual.blocks.28.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
697
+ "visual.blocks.28.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
698
+ "visual.blocks.28.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
699
+ "visual.blocks.28.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
700
+ "visual.blocks.28.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
701
+ "visual.blocks.28.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
702
+ "visual.blocks.28.norm1.weight": "model-00001-of-00002.safetensors",
703
+ "visual.blocks.28.norm2.weight": "model-00001-of-00002.safetensors",
704
+ "visual.blocks.29.attn.proj.bias": "model-00001-of-00002.safetensors",
705
+ "visual.blocks.29.attn.proj.weight": "model-00001-of-00002.safetensors",
706
+ "visual.blocks.29.attn.qkv.bias": "model-00001-of-00002.safetensors",
707
+ "visual.blocks.29.attn.qkv.weight": "model-00001-of-00002.safetensors",
708
+ "visual.blocks.29.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
709
+ "visual.blocks.29.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
710
+ "visual.blocks.29.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
711
+ "visual.blocks.29.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
712
+ "visual.blocks.29.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
713
+ "visual.blocks.29.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
714
+ "visual.blocks.29.norm1.weight": "model-00001-of-00002.safetensors",
715
+ "visual.blocks.29.norm2.weight": "model-00001-of-00002.safetensors",
716
+ "visual.blocks.3.attn.proj.bias": "model-00001-of-00002.safetensors",
717
+ "visual.blocks.3.attn.proj.weight": "model-00001-of-00002.safetensors",
718
+ "visual.blocks.3.attn.qkv.bias": "model-00001-of-00002.safetensors",
719
+ "visual.blocks.3.attn.qkv.weight": "model-00001-of-00002.safetensors",
720
+ "visual.blocks.3.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
721
+ "visual.blocks.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
722
+ "visual.blocks.3.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
723
+ "visual.blocks.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
724
+ "visual.blocks.3.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
725
+ "visual.blocks.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
726
+ "visual.blocks.3.norm1.weight": "model-00001-of-00002.safetensors",
727
+ "visual.blocks.3.norm2.weight": "model-00001-of-00002.safetensors",
728
+ "visual.blocks.30.attn.proj.bias": "model-00001-of-00002.safetensors",
729
+ "visual.blocks.30.attn.proj.weight": "model-00001-of-00002.safetensors",
730
+ "visual.blocks.30.attn.qkv.bias": "model-00001-of-00002.safetensors",
731
+ "visual.blocks.30.attn.qkv.weight": "model-00001-of-00002.safetensors",
732
+ "visual.blocks.30.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
733
+ "visual.blocks.30.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
734
+ "visual.blocks.30.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
735
+ "visual.blocks.30.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
736
+ "visual.blocks.30.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
737
+ "visual.blocks.30.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
738
+ "visual.blocks.30.norm1.weight": "model-00001-of-00002.safetensors",
739
+ "visual.blocks.30.norm2.weight": "model-00001-of-00002.safetensors",
740
+ "visual.blocks.31.attn.proj.bias": "model-00001-of-00002.safetensors",
741
+ "visual.blocks.31.attn.proj.weight": "model-00001-of-00002.safetensors",
742
+ "visual.blocks.31.attn.qkv.bias": "model-00001-of-00002.safetensors",
743
+ "visual.blocks.31.attn.qkv.weight": "model-00001-of-00002.safetensors",
744
+ "visual.blocks.31.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
745
+ "visual.blocks.31.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
746
+ "visual.blocks.31.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
747
+ "visual.blocks.31.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
748
+ "visual.blocks.31.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
749
+ "visual.blocks.31.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
750
+ "visual.blocks.31.norm1.weight": "model-00001-of-00002.safetensors",
751
+ "visual.blocks.31.norm2.weight": "model-00001-of-00002.safetensors",
752
+ "visual.blocks.4.attn.proj.bias": "model-00001-of-00002.safetensors",
753
+ "visual.blocks.4.attn.proj.weight": "model-00001-of-00002.safetensors",
754
+ "visual.blocks.4.attn.qkv.bias": "model-00001-of-00002.safetensors",
755
+ "visual.blocks.4.attn.qkv.weight": "model-00001-of-00002.safetensors",
756
+ "visual.blocks.4.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
757
+ "visual.blocks.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
758
+ "visual.blocks.4.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
759
+ "visual.blocks.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
760
+ "visual.blocks.4.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
761
+ "visual.blocks.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
762
+ "visual.blocks.4.norm1.weight": "model-00001-of-00002.safetensors",
763
+ "visual.blocks.4.norm2.weight": "model-00001-of-00002.safetensors",
764
+ "visual.blocks.5.attn.proj.bias": "model-00001-of-00002.safetensors",
765
+ "visual.blocks.5.attn.proj.weight": "model-00001-of-00002.safetensors",
766
+ "visual.blocks.5.attn.qkv.bias": "model-00001-of-00002.safetensors",
767
+ "visual.blocks.5.attn.qkv.weight": "model-00001-of-00002.safetensors",
768
+ "visual.blocks.5.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
769
+ "visual.blocks.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
770
+ "visual.blocks.5.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
771
+ "visual.blocks.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
772
+ "visual.blocks.5.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
773
+ "visual.blocks.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
774
+ "visual.blocks.5.norm1.weight": "model-00001-of-00002.safetensors",
775
+ "visual.blocks.5.norm2.weight": "model-00001-of-00002.safetensors",
776
+ "visual.blocks.6.attn.proj.bias": "model-00001-of-00002.safetensors",
777
+ "visual.blocks.6.attn.proj.weight": "model-00001-of-00002.safetensors",
778
+ "visual.blocks.6.attn.qkv.bias": "model-00001-of-00002.safetensors",
779
+ "visual.blocks.6.attn.qkv.weight": "model-00001-of-00002.safetensors",
780
+ "visual.blocks.6.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
781
+ "visual.blocks.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
782
+ "visual.blocks.6.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
783
+ "visual.blocks.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
784
+ "visual.blocks.6.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
785
+ "visual.blocks.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
786
+ "visual.blocks.6.norm1.weight": "model-00001-of-00002.safetensors",
787
+ "visual.blocks.6.norm2.weight": "model-00001-of-00002.safetensors",
788
+ "visual.blocks.7.attn.proj.bias": "model-00001-of-00002.safetensors",
789
+ "visual.blocks.7.attn.proj.weight": "model-00001-of-00002.safetensors",
790
+ "visual.blocks.7.attn.qkv.bias": "model-00001-of-00002.safetensors",
791
+ "visual.blocks.7.attn.qkv.weight": "model-00001-of-00002.safetensors",
792
+ "visual.blocks.7.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
793
+ "visual.blocks.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
794
+ "visual.blocks.7.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
795
+ "visual.blocks.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
796
+ "visual.blocks.7.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
797
+ "visual.blocks.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
798
+ "visual.blocks.7.norm1.weight": "model-00001-of-00002.safetensors",
799
+ "visual.blocks.7.norm2.weight": "model-00001-of-00002.safetensors",
800
+ "visual.blocks.8.attn.proj.bias": "model-00001-of-00002.safetensors",
801
+ "visual.blocks.8.attn.proj.weight": "model-00001-of-00002.safetensors",
802
+ "visual.blocks.8.attn.qkv.bias": "model-00001-of-00002.safetensors",
803
+ "visual.blocks.8.attn.qkv.weight": "model-00001-of-00002.safetensors",
804
+ "visual.blocks.8.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
805
+ "visual.blocks.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
806
+ "visual.blocks.8.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
807
+ "visual.blocks.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
808
+ "visual.blocks.8.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
809
+ "visual.blocks.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
810
+ "visual.blocks.8.norm1.weight": "model-00001-of-00002.safetensors",
811
+ "visual.blocks.8.norm2.weight": "model-00001-of-00002.safetensors",
812
+ "visual.blocks.9.attn.proj.bias": "model-00001-of-00002.safetensors",
813
+ "visual.blocks.9.attn.proj.weight": "model-00001-of-00002.safetensors",
814
+ "visual.blocks.9.attn.qkv.bias": "model-00001-of-00002.safetensors",
815
+ "visual.blocks.9.attn.qkv.weight": "model-00001-of-00002.safetensors",
816
+ "visual.blocks.9.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
817
+ "visual.blocks.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
818
+ "visual.blocks.9.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
819
+ "visual.blocks.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
820
+ "visual.blocks.9.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
821
+ "visual.blocks.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
822
+ "visual.blocks.9.norm1.weight": "model-00001-of-00002.safetensors",
823
+ "visual.blocks.9.norm2.weight": "model-00001-of-00002.safetensors",
824
+ "visual.merger.ln_q.weight": "model-00001-of-00002.safetensors",
825
+ "visual.merger.mlp.0.bias": "model-00001-of-00002.safetensors",
826
+ "visual.merger.mlp.0.weight": "model-00001-of-00002.safetensors",
827
+ "visual.merger.mlp.2.bias": "model-00001-of-00002.safetensors",
828
+ "visual.merger.mlp.2.weight": "model-00001-of-00002.safetensors",
829
+ "visual.patch_embed.proj.weight": "model-00001-of-00002.safetensors"
830
+ }
831
+ }
checkpoint-1300/preprocessor_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": true,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.48145466,
8
+ 0.4578275,
9
+ 0.40821073
10
+ ],
11
+ "image_processor_type": "Qwen2VLImageProcessor",
12
+ "image_std": [
13
+ 0.26862954,
14
+ 0.26130258,
15
+ 0.27577711
16
+ ],
17
+ "max_pixels": 401408,
18
+ "merge_size": 2,
19
+ "min_pixels": 3136,
20
+ "patch_size": 14,
21
+ "processor_class": "Qwen2_5_VLProcessor",
22
+ "resample": 3,
23
+ "rescale_factor": 0.00392156862745098,
24
+ "size": {
25
+ "longest_edge": 12845056,
26
+ "shortest_edge": 3136
27
+ },
28
+ "temporal_patch_size": 2
29
+ }
checkpoint-1300/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
checkpoint-1300/tokenizer_config.json ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "processor_class": "Qwen2_5_VLProcessor",
206
+ "split_special_tokens": false,
207
+ "tokenizer_class": "Qwen2Tokenizer",
208
+ "unk_token": null
209
+ }
checkpoint-1300/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1400/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-1400/chat_template.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
3
+ }
checkpoint-1400/config.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-VL-3B-Instruct",
3
+ "architectures": [
4
+ "Qwen2_5_VLForConditionalGeneration"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 2048,
11
+ "image_token_id": 151655,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 11008,
14
+ "max_position_embeddings": 128000,
15
+ "max_window_layers": 70,
16
+ "model_type": "qwen2_5_vl",
17
+ "num_attention_heads": 16,
18
+ "num_hidden_layers": 36,
19
+ "num_key_value_heads": 2,
20
+ "rms_norm_eps": 1e-06,
21
+ "rope_scaling": {
22
+ "mrope_section": [
23
+ 16,
24
+ 24,
25
+ 24
26
+ ],
27
+ "rope_type": "default",
28
+ "type": "default"
29
+ },
30
+ "rope_theta": 1000000.0,
31
+ "sliding_window": 32768,
32
+ "tie_word_embeddings": true,
33
+ "torch_dtype": "bfloat16",
34
+ "transformers_version": "4.50.0.dev0",
35
+ "use_cache": false,
36
+ "use_sliding_window": false,
37
+ "video_token_id": 151656,
38
+ "vision_config": {
39
+ "hidden_size": 1280,
40
+ "in_chans": 3,
41
+ "model_type": "qwen2_5_vl",
42
+ "out_hidden_size": 2048,
43
+ "spatial_patch_size": 14,
44
+ "tokens_per_second": 2,
45
+ "torch_dtype": "float32"
46
+ },
47
+ "vision_end_token_id": 151653,
48
+ "vision_start_token_id": 151652,
49
+ "vision_token_id": 151654,
50
+ "vocab_size": 151936
51
+ }
checkpoint-1400/generation_config.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "attn_implementation": "flash_attention_2",
3
+ "bos_token_id": 151643,
4
+ "do_sample": true,
5
+ "eos_token_id": [
6
+ 151645,
7
+ 151643
8
+ ],
9
+ "pad_token_id": 151643,
10
+ "repetition_penalty": 1.05,
11
+ "temperature": 0.1,
12
+ "top_k": 1,
13
+ "top_p": 0.001,
14
+ "transformers_version": "4.50.0.dev0",
15
+ "use_cache": false
16
+ }
checkpoint-1400/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1400/model.safetensors.index.json ADDED
@@ -0,0 +1,831 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 7509245952
4
+ },
5
+ "weight_map": {
6
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
7
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
17
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
18
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
19
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
26
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
28
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
30
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
31
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
37
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
38
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
40
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
42
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
49
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
50
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
52
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
53
+ "model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
54
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
55
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
61
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
62
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
64
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
65
+ "model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
66
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
67
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
73
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
74
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
76
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
77
+ "model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
78
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
79
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
85
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
86
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
88
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
89
+ "model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
90
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
91
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
97
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
98
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
100
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
101
+ "model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
102
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
103
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
109
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
110
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
112
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
113
+ "model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
114
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
115
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
121
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
122
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
124
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
125
+ "model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
126
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
127
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
129
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
133
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
134
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
135
+ "model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
136
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
137
+ "model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
138
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
139
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00002.safetensors",
140
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
141
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
142
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
143
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
144
+ "model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
145
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
146
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
147
+ "model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
148
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
149
+ "model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
150
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
151
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
152
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
153
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
154
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
155
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
156
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
157
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
158
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
159
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
160
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
161
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
162
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
163
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
164
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
165
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
166
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
167
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
168
+ "model.layers.20.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
169
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
170
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
171
+ "model.layers.20.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
172
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
173
+ "model.layers.20.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
174
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
175
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
176
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
177
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
178
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
179
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
180
+ "model.layers.21.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
181
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
182
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
183
+ "model.layers.21.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
184
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
185
+ "model.layers.21.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
186
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
187
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
188
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
189
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
190
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
191
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
192
+ "model.layers.22.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
193
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
194
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
195
+ "model.layers.22.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
196
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
197
+ "model.layers.22.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
198
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
199
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
200
+ "model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
201
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
202
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
203
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
204
+ "model.layers.23.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
205
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
206
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
207
+ "model.layers.23.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
208
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
209
+ "model.layers.23.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
210
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
211
+ "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
212
+ "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
213
+ "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
214
+ "model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
215
+ "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
216
+ "model.layers.24.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
217
+ "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
218
+ "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
219
+ "model.layers.24.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
220
+ "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
221
+ "model.layers.24.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
222
+ "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
223
+ "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
224
+ "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
225
+ "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
226
+ "model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
227
+ "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
228
+ "model.layers.25.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
229
+ "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
230
+ "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
231
+ "model.layers.25.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
232
+ "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
233
+ "model.layers.25.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
234
+ "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
235
+ "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
236
+ "model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
237
+ "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
238
+ "model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
239
+ "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
240
+ "model.layers.26.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
241
+ "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
242
+ "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
243
+ "model.layers.26.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
244
+ "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
245
+ "model.layers.26.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
246
+ "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
247
+ "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
248
+ "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
249
+ "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
250
+ "model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
251
+ "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
252
+ "model.layers.27.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
253
+ "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
254
+ "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
255
+ "model.layers.27.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
256
+ "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
257
+ "model.layers.27.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
258
+ "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
259
+ "model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
260
+ "model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
261
+ "model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
262
+ "model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
263
+ "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
264
+ "model.layers.28.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
265
+ "model.layers.28.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
266
+ "model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
267
+ "model.layers.28.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
268
+ "model.layers.28.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
269
+ "model.layers.28.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
270
+ "model.layers.28.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
271
+ "model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
272
+ "model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
273
+ "model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
274
+ "model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
275
+ "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
276
+ "model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
277
+ "model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
278
+ "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
279
+ "model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
280
+ "model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
281
+ "model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
282
+ "model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
283
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
284
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
285
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
286
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
287
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
288
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
289
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
290
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
291
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
292
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
293
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
294
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
295
+ "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
296
+ "model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
297
+ "model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
298
+ "model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
299
+ "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
300
+ "model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
301
+ "model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
302
+ "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
303
+ "model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
304
+ "model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
305
+ "model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
306
+ "model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
307
+ "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
308
+ "model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
309
+ "model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
310
+ "model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
311
+ "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
312
+ "model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
313
+ "model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
314
+ "model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
315
+ "model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
316
+ "model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
317
+ "model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
318
+ "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
319
+ "model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
320
+ "model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
321
+ "model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
322
+ "model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
323
+ "model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
324
+ "model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
325
+ "model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
326
+ "model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
327
+ "model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
328
+ "model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
329
+ "model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
330
+ "model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
331
+ "model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
332
+ "model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
333
+ "model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
334
+ "model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
335
+ "model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
336
+ "model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
337
+ "model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
338
+ "model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
339
+ "model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
340
+ "model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
341
+ "model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
342
+ "model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
343
+ "model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
344
+ "model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
345
+ "model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
346
+ "model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
347
+ "model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
348
+ "model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
349
+ "model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
350
+ "model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
351
+ "model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
352
+ "model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
353
+ "model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
354
+ "model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
355
+ "model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
356
+ "model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
357
+ "model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
358
+ "model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
359
+ "model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
360
+ "model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
361
+ "model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
362
+ "model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
363
+ "model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
364
+ "model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
365
+ "model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
366
+ "model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
367
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
368
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
369
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
370
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
371
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
372
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
373
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
374
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
375
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
376
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
377
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
378
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
379
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
380
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
381
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
382
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
383
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
384
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
385
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
386
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
387
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
388
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
389
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
390
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
391
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
392
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
393
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
394
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
395
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
396
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
397
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
398
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
399
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
400
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
401
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
402
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
403
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
404
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
405
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
406
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
407
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
408
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
409
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
410
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
411
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
412
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
413
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
414
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
415
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
416
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
417
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
418
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
419
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
420
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
421
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
422
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
423
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
424
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
425
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
426
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
427
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
428
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
429
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
430
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
431
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
432
+ "model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
433
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
434
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
435
+ "model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
436
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
437
+ "model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
438
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
439
+ "model.norm.weight": "model-00002-of-00002.safetensors",
440
+ "visual.blocks.0.attn.proj.bias": "model-00001-of-00002.safetensors",
441
+ "visual.blocks.0.attn.proj.weight": "model-00001-of-00002.safetensors",
442
+ "visual.blocks.0.attn.qkv.bias": "model-00001-of-00002.safetensors",
443
+ "visual.blocks.0.attn.qkv.weight": "model-00001-of-00002.safetensors",
444
+ "visual.blocks.0.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
445
+ "visual.blocks.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
446
+ "visual.blocks.0.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
447
+ "visual.blocks.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
448
+ "visual.blocks.0.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
449
+ "visual.blocks.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
450
+ "visual.blocks.0.norm1.weight": "model-00001-of-00002.safetensors",
451
+ "visual.blocks.0.norm2.weight": "model-00001-of-00002.safetensors",
452
+ "visual.blocks.1.attn.proj.bias": "model-00001-of-00002.safetensors",
453
+ "visual.blocks.1.attn.proj.weight": "model-00001-of-00002.safetensors",
454
+ "visual.blocks.1.attn.qkv.bias": "model-00001-of-00002.safetensors",
455
+ "visual.blocks.1.attn.qkv.weight": "model-00001-of-00002.safetensors",
456
+ "visual.blocks.1.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
457
+ "visual.blocks.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
458
+ "visual.blocks.1.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
459
+ "visual.blocks.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
460
+ "visual.blocks.1.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
461
+ "visual.blocks.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
462
+ "visual.blocks.1.norm1.weight": "model-00001-of-00002.safetensors",
463
+ "visual.blocks.1.norm2.weight": "model-00001-of-00002.safetensors",
464
+ "visual.blocks.10.attn.proj.bias": "model-00001-of-00002.safetensors",
465
+ "visual.blocks.10.attn.proj.weight": "model-00001-of-00002.safetensors",
466
+ "visual.blocks.10.attn.qkv.bias": "model-00001-of-00002.safetensors",
467
+ "visual.blocks.10.attn.qkv.weight": "model-00001-of-00002.safetensors",
468
+ "visual.blocks.10.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
469
+ "visual.blocks.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
470
+ "visual.blocks.10.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
471
+ "visual.blocks.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
472
+ "visual.blocks.10.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
473
+ "visual.blocks.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
474
+ "visual.blocks.10.norm1.weight": "model-00001-of-00002.safetensors",
475
+ "visual.blocks.10.norm2.weight": "model-00001-of-00002.safetensors",
476
+ "visual.blocks.11.attn.proj.bias": "model-00001-of-00002.safetensors",
477
+ "visual.blocks.11.attn.proj.weight": "model-00001-of-00002.safetensors",
478
+ "visual.blocks.11.attn.qkv.bias": "model-00001-of-00002.safetensors",
479
+ "visual.blocks.11.attn.qkv.weight": "model-00001-of-00002.safetensors",
480
+ "visual.blocks.11.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
481
+ "visual.blocks.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
482
+ "visual.blocks.11.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
483
+ "visual.blocks.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
484
+ "visual.blocks.11.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
485
+ "visual.blocks.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
486
+ "visual.blocks.11.norm1.weight": "model-00001-of-00002.safetensors",
487
+ "visual.blocks.11.norm2.weight": "model-00001-of-00002.safetensors",
488
+ "visual.blocks.12.attn.proj.bias": "model-00001-of-00002.safetensors",
489
+ "visual.blocks.12.attn.proj.weight": "model-00001-of-00002.safetensors",
490
+ "visual.blocks.12.attn.qkv.bias": "model-00001-of-00002.safetensors",
491
+ "visual.blocks.12.attn.qkv.weight": "model-00001-of-00002.safetensors",
492
+ "visual.blocks.12.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
493
+ "visual.blocks.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
494
+ "visual.blocks.12.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
495
+ "visual.blocks.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
496
+ "visual.blocks.12.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
497
+ "visual.blocks.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
498
+ "visual.blocks.12.norm1.weight": "model-00001-of-00002.safetensors",
499
+ "visual.blocks.12.norm2.weight": "model-00001-of-00002.safetensors",
500
+ "visual.blocks.13.attn.proj.bias": "model-00001-of-00002.safetensors",
501
+ "visual.blocks.13.attn.proj.weight": "model-00001-of-00002.safetensors",
502
+ "visual.blocks.13.attn.qkv.bias": "model-00001-of-00002.safetensors",
503
+ "visual.blocks.13.attn.qkv.weight": "model-00001-of-00002.safetensors",
504
+ "visual.blocks.13.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
505
+ "visual.blocks.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
506
+ "visual.blocks.13.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
507
+ "visual.blocks.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
508
+ "visual.blocks.13.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
509
+ "visual.blocks.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
510
+ "visual.blocks.13.norm1.weight": "model-00001-of-00002.safetensors",
511
+ "visual.blocks.13.norm2.weight": "model-00001-of-00002.safetensors",
512
+ "visual.blocks.14.attn.proj.bias": "model-00001-of-00002.safetensors",
513
+ "visual.blocks.14.attn.proj.weight": "model-00001-of-00002.safetensors",
514
+ "visual.blocks.14.attn.qkv.bias": "model-00001-of-00002.safetensors",
515
+ "visual.blocks.14.attn.qkv.weight": "model-00001-of-00002.safetensors",
516
+ "visual.blocks.14.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
517
+ "visual.blocks.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
518
+ "visual.blocks.14.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
519
+ "visual.blocks.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
520
+ "visual.blocks.14.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
521
+ "visual.blocks.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
522
+ "visual.blocks.14.norm1.weight": "model-00001-of-00002.safetensors",
523
+ "visual.blocks.14.norm2.weight": "model-00001-of-00002.safetensors",
524
+ "visual.blocks.15.attn.proj.bias": "model-00001-of-00002.safetensors",
525
+ "visual.blocks.15.attn.proj.weight": "model-00001-of-00002.safetensors",
526
+ "visual.blocks.15.attn.qkv.bias": "model-00001-of-00002.safetensors",
527
+ "visual.blocks.15.attn.qkv.weight": "model-00001-of-00002.safetensors",
528
+ "visual.blocks.15.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
529
+ "visual.blocks.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
530
+ "visual.blocks.15.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
531
+ "visual.blocks.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
532
+ "visual.blocks.15.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
533
+ "visual.blocks.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
534
+ "visual.blocks.15.norm1.weight": "model-00001-of-00002.safetensors",
535
+ "visual.blocks.15.norm2.weight": "model-00001-of-00002.safetensors",
536
+ "visual.blocks.16.attn.proj.bias": "model-00001-of-00002.safetensors",
537
+ "visual.blocks.16.attn.proj.weight": "model-00001-of-00002.safetensors",
538
+ "visual.blocks.16.attn.qkv.bias": "model-00001-of-00002.safetensors",
539
+ "visual.blocks.16.attn.qkv.weight": "model-00001-of-00002.safetensors",
540
+ "visual.blocks.16.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
541
+ "visual.blocks.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
542
+ "visual.blocks.16.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
543
+ "visual.blocks.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
544
+ "visual.blocks.16.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
545
+ "visual.blocks.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
546
+ "visual.blocks.16.norm1.weight": "model-00001-of-00002.safetensors",
547
+ "visual.blocks.16.norm2.weight": "model-00001-of-00002.safetensors",
548
+ "visual.blocks.17.attn.proj.bias": "model-00001-of-00002.safetensors",
549
+ "visual.blocks.17.attn.proj.weight": "model-00001-of-00002.safetensors",
550
+ "visual.blocks.17.attn.qkv.bias": "model-00001-of-00002.safetensors",
551
+ "visual.blocks.17.attn.qkv.weight": "model-00001-of-00002.safetensors",
552
+ "visual.blocks.17.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
553
+ "visual.blocks.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
554
+ "visual.blocks.17.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
555
+ "visual.blocks.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
556
+ "visual.blocks.17.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
557
+ "visual.blocks.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
558
+ "visual.blocks.17.norm1.weight": "model-00001-of-00002.safetensors",
559
+ "visual.blocks.17.norm2.weight": "model-00001-of-00002.safetensors",
560
+ "visual.blocks.18.attn.proj.bias": "model-00001-of-00002.safetensors",
561
+ "visual.blocks.18.attn.proj.weight": "model-00001-of-00002.safetensors",
562
+ "visual.blocks.18.attn.qkv.bias": "model-00001-of-00002.safetensors",
563
+ "visual.blocks.18.attn.qkv.weight": "model-00001-of-00002.safetensors",
564
+ "visual.blocks.18.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
565
+ "visual.blocks.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
566
+ "visual.blocks.18.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
567
+ "visual.blocks.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
568
+ "visual.blocks.18.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
569
+ "visual.blocks.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
570
+ "visual.blocks.18.norm1.weight": "model-00001-of-00002.safetensors",
571
+ "visual.blocks.18.norm2.weight": "model-00001-of-00002.safetensors",
572
+ "visual.blocks.19.attn.proj.bias": "model-00001-of-00002.safetensors",
573
+ "visual.blocks.19.attn.proj.weight": "model-00001-of-00002.safetensors",
574
+ "visual.blocks.19.attn.qkv.bias": "model-00001-of-00002.safetensors",
575
+ "visual.blocks.19.attn.qkv.weight": "model-00001-of-00002.safetensors",
576
+ "visual.blocks.19.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
577
+ "visual.blocks.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
578
+ "visual.blocks.19.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
579
+ "visual.blocks.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
580
+ "visual.blocks.19.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
581
+ "visual.blocks.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
582
+ "visual.blocks.19.norm1.weight": "model-00001-of-00002.safetensors",
583
+ "visual.blocks.19.norm2.weight": "model-00001-of-00002.safetensors",
584
+ "visual.blocks.2.attn.proj.bias": "model-00001-of-00002.safetensors",
585
+ "visual.blocks.2.attn.proj.weight": "model-00001-of-00002.safetensors",
586
+ "visual.blocks.2.attn.qkv.bias": "model-00001-of-00002.safetensors",
587
+ "visual.blocks.2.attn.qkv.weight": "model-00001-of-00002.safetensors",
588
+ "visual.blocks.2.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
589
+ "visual.blocks.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
590
+ "visual.blocks.2.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
591
+ "visual.blocks.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
592
+ "visual.blocks.2.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
593
+ "visual.blocks.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
594
+ "visual.blocks.2.norm1.weight": "model-00001-of-00002.safetensors",
595
+ "visual.blocks.2.norm2.weight": "model-00001-of-00002.safetensors",
596
+ "visual.blocks.20.attn.proj.bias": "model-00001-of-00002.safetensors",
597
+ "visual.blocks.20.attn.proj.weight": "model-00001-of-00002.safetensors",
598
+ "visual.blocks.20.attn.qkv.bias": "model-00001-of-00002.safetensors",
599
+ "visual.blocks.20.attn.qkv.weight": "model-00001-of-00002.safetensors",
600
+ "visual.blocks.20.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
601
+ "visual.blocks.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
602
+ "visual.blocks.20.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
603
+ "visual.blocks.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
604
+ "visual.blocks.20.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
605
+ "visual.blocks.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
606
+ "visual.blocks.20.norm1.weight": "model-00001-of-00002.safetensors",
607
+ "visual.blocks.20.norm2.weight": "model-00001-of-00002.safetensors",
608
+ "visual.blocks.21.attn.proj.bias": "model-00001-of-00002.safetensors",
609
+ "visual.blocks.21.attn.proj.weight": "model-00001-of-00002.safetensors",
610
+ "visual.blocks.21.attn.qkv.bias": "model-00001-of-00002.safetensors",
611
+ "visual.blocks.21.attn.qkv.weight": "model-00001-of-00002.safetensors",
612
+ "visual.blocks.21.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
613
+ "visual.blocks.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
614
+ "visual.blocks.21.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
615
+ "visual.blocks.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
616
+ "visual.blocks.21.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
617
+ "visual.blocks.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
618
+ "visual.blocks.21.norm1.weight": "model-00001-of-00002.safetensors",
619
+ "visual.blocks.21.norm2.weight": "model-00001-of-00002.safetensors",
620
+ "visual.blocks.22.attn.proj.bias": "model-00001-of-00002.safetensors",
621
+ "visual.blocks.22.attn.proj.weight": "model-00001-of-00002.safetensors",
622
+ "visual.blocks.22.attn.qkv.bias": "model-00001-of-00002.safetensors",
623
+ "visual.blocks.22.attn.qkv.weight": "model-00001-of-00002.safetensors",
624
+ "visual.blocks.22.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
625
+ "visual.blocks.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
626
+ "visual.blocks.22.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
627
+ "visual.blocks.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
628
+ "visual.blocks.22.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
629
+ "visual.blocks.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
630
+ "visual.blocks.22.norm1.weight": "model-00001-of-00002.safetensors",
631
+ "visual.blocks.22.norm2.weight": "model-00001-of-00002.safetensors",
632
+ "visual.blocks.23.attn.proj.bias": "model-00001-of-00002.safetensors",
633
+ "visual.blocks.23.attn.proj.weight": "model-00001-of-00002.safetensors",
634
+ "visual.blocks.23.attn.qkv.bias": "model-00001-of-00002.safetensors",
635
+ "visual.blocks.23.attn.qkv.weight": "model-00001-of-00002.safetensors",
636
+ "visual.blocks.23.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
637
+ "visual.blocks.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
638
+ "visual.blocks.23.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
639
+ "visual.blocks.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
640
+ "visual.blocks.23.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
641
+ "visual.blocks.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
642
+ "visual.blocks.23.norm1.weight": "model-00001-of-00002.safetensors",
643
+ "visual.blocks.23.norm2.weight": "model-00001-of-00002.safetensors",
644
+ "visual.blocks.24.attn.proj.bias": "model-00001-of-00002.safetensors",
645
+ "visual.blocks.24.attn.proj.weight": "model-00001-of-00002.safetensors",
646
+ "visual.blocks.24.attn.qkv.bias": "model-00001-of-00002.safetensors",
647
+ "visual.blocks.24.attn.qkv.weight": "model-00001-of-00002.safetensors",
648
+ "visual.blocks.24.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
649
+ "visual.blocks.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
650
+ "visual.blocks.24.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
651
+ "visual.blocks.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
652
+ "visual.blocks.24.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
653
+ "visual.blocks.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
654
+ "visual.blocks.24.norm1.weight": "model-00001-of-00002.safetensors",
655
+ "visual.blocks.24.norm2.weight": "model-00001-of-00002.safetensors",
656
+ "visual.blocks.25.attn.proj.bias": "model-00001-of-00002.safetensors",
657
+ "visual.blocks.25.attn.proj.weight": "model-00001-of-00002.safetensors",
658
+ "visual.blocks.25.attn.qkv.bias": "model-00001-of-00002.safetensors",
659
+ "visual.blocks.25.attn.qkv.weight": "model-00001-of-00002.safetensors",
660
+ "visual.blocks.25.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
661
+ "visual.blocks.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
662
+ "visual.blocks.25.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
663
+ "visual.blocks.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
664
+ "visual.blocks.25.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
665
+ "visual.blocks.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
666
+ "visual.blocks.25.norm1.weight": "model-00001-of-00002.safetensors",
667
+ "visual.blocks.25.norm2.weight": "model-00001-of-00002.safetensors",
668
+ "visual.blocks.26.attn.proj.bias": "model-00001-of-00002.safetensors",
669
+ "visual.blocks.26.attn.proj.weight": "model-00001-of-00002.safetensors",
670
+ "visual.blocks.26.attn.qkv.bias": "model-00001-of-00002.safetensors",
671
+ "visual.blocks.26.attn.qkv.weight": "model-00001-of-00002.safetensors",
672
+ "visual.blocks.26.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
673
+ "visual.blocks.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
674
+ "visual.blocks.26.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
675
+ "visual.blocks.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
676
+ "visual.blocks.26.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
677
+ "visual.blocks.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
678
+ "visual.blocks.26.norm1.weight": "model-00001-of-00002.safetensors",
679
+ "visual.blocks.26.norm2.weight": "model-00001-of-00002.safetensors",
680
+ "visual.blocks.27.attn.proj.bias": "model-00001-of-00002.safetensors",
681
+ "visual.blocks.27.attn.proj.weight": "model-00001-of-00002.safetensors",
682
+ "visual.blocks.27.attn.qkv.bias": "model-00001-of-00002.safetensors",
683
+ "visual.blocks.27.attn.qkv.weight": "model-00001-of-00002.safetensors",
684
+ "visual.blocks.27.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
685
+ "visual.blocks.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
686
+ "visual.blocks.27.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
687
+ "visual.blocks.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
688
+ "visual.blocks.27.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
689
+ "visual.blocks.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
690
+ "visual.blocks.27.norm1.weight": "model-00001-of-00002.safetensors",
691
+ "visual.blocks.27.norm2.weight": "model-00001-of-00002.safetensors",
692
+ "visual.blocks.28.attn.proj.bias": "model-00001-of-00002.safetensors",
693
+ "visual.blocks.28.attn.proj.weight": "model-00001-of-00002.safetensors",
694
+ "visual.blocks.28.attn.qkv.bias": "model-00001-of-00002.safetensors",
695
+ "visual.blocks.28.attn.qkv.weight": "model-00001-of-00002.safetensors",
696
+ "visual.blocks.28.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
697
+ "visual.blocks.28.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
698
+ "visual.blocks.28.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
699
+ "visual.blocks.28.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
700
+ "visual.blocks.28.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
701
+ "visual.blocks.28.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
702
+ "visual.blocks.28.norm1.weight": "model-00001-of-00002.safetensors",
703
+ "visual.blocks.28.norm2.weight": "model-00001-of-00002.safetensors",
704
+ "visual.blocks.29.attn.proj.bias": "model-00001-of-00002.safetensors",
705
+ "visual.blocks.29.attn.proj.weight": "model-00001-of-00002.safetensors",
706
+ "visual.blocks.29.attn.qkv.bias": "model-00001-of-00002.safetensors",
707
+ "visual.blocks.29.attn.qkv.weight": "model-00001-of-00002.safetensors",
708
+ "visual.blocks.29.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
709
+ "visual.blocks.29.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
710
+ "visual.blocks.29.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
711
+ "visual.blocks.29.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
712
+ "visual.blocks.29.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
713
+ "visual.blocks.29.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
714
+ "visual.blocks.29.norm1.weight": "model-00001-of-00002.safetensors",
715
+ "visual.blocks.29.norm2.weight": "model-00001-of-00002.safetensors",
716
+ "visual.blocks.3.attn.proj.bias": "model-00001-of-00002.safetensors",
717
+ "visual.blocks.3.attn.proj.weight": "model-00001-of-00002.safetensors",
718
+ "visual.blocks.3.attn.qkv.bias": "model-00001-of-00002.safetensors",
719
+ "visual.blocks.3.attn.qkv.weight": "model-00001-of-00002.safetensors",
720
+ "visual.blocks.3.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
721
+ "visual.blocks.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
722
+ "visual.blocks.3.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
723
+ "visual.blocks.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
724
+ "visual.blocks.3.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
725
+ "visual.blocks.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
726
+ "visual.blocks.3.norm1.weight": "model-00001-of-00002.safetensors",
727
+ "visual.blocks.3.norm2.weight": "model-00001-of-00002.safetensors",
728
+ "visual.blocks.30.attn.proj.bias": "model-00001-of-00002.safetensors",
729
+ "visual.blocks.30.attn.proj.weight": "model-00001-of-00002.safetensors",
730
+ "visual.blocks.30.attn.qkv.bias": "model-00001-of-00002.safetensors",
731
+ "visual.blocks.30.attn.qkv.weight": "model-00001-of-00002.safetensors",
732
+ "visual.blocks.30.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
733
+ "visual.blocks.30.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
734
+ "visual.blocks.30.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
735
+ "visual.blocks.30.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
736
+ "visual.blocks.30.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
737
+ "visual.blocks.30.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
738
+ "visual.blocks.30.norm1.weight": "model-00001-of-00002.safetensors",
739
+ "visual.blocks.30.norm2.weight": "model-00001-of-00002.safetensors",
740
+ "visual.blocks.31.attn.proj.bias": "model-00001-of-00002.safetensors",
741
+ "visual.blocks.31.attn.proj.weight": "model-00001-of-00002.safetensors",
742
+ "visual.blocks.31.attn.qkv.bias": "model-00001-of-00002.safetensors",
743
+ "visual.blocks.31.attn.qkv.weight": "model-00001-of-00002.safetensors",
744
+ "visual.blocks.31.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
745
+ "visual.blocks.31.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
746
+ "visual.blocks.31.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
747
+ "visual.blocks.31.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
748
+ "visual.blocks.31.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
749
+ "visual.blocks.31.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
750
+ "visual.blocks.31.norm1.weight": "model-00001-of-00002.safetensors",
751
+ "visual.blocks.31.norm2.weight": "model-00001-of-00002.safetensors",
752
+ "visual.blocks.4.attn.proj.bias": "model-00001-of-00002.safetensors",
753
+ "visual.blocks.4.attn.proj.weight": "model-00001-of-00002.safetensors",
754
+ "visual.blocks.4.attn.qkv.bias": "model-00001-of-00002.safetensors",
755
+ "visual.blocks.4.attn.qkv.weight": "model-00001-of-00002.safetensors",
756
+ "visual.blocks.4.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
757
+ "visual.blocks.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
758
+ "visual.blocks.4.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
759
+ "visual.blocks.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
760
+ "visual.blocks.4.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
761
+ "visual.blocks.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
762
+ "visual.blocks.4.norm1.weight": "model-00001-of-00002.safetensors",
763
+ "visual.blocks.4.norm2.weight": "model-00001-of-00002.safetensors",
764
+ "visual.blocks.5.attn.proj.bias": "model-00001-of-00002.safetensors",
765
+ "visual.blocks.5.attn.proj.weight": "model-00001-of-00002.safetensors",
766
+ "visual.blocks.5.attn.qkv.bias": "model-00001-of-00002.safetensors",
767
+ "visual.blocks.5.attn.qkv.weight": "model-00001-of-00002.safetensors",
768
+ "visual.blocks.5.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
769
+ "visual.blocks.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
770
+ "visual.blocks.5.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
771
+ "visual.blocks.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
772
+ "visual.blocks.5.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
773
+ "visual.blocks.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
774
+ "visual.blocks.5.norm1.weight": "model-00001-of-00002.safetensors",
775
+ "visual.blocks.5.norm2.weight": "model-00001-of-00002.safetensors",
776
+ "visual.blocks.6.attn.proj.bias": "model-00001-of-00002.safetensors",
777
+ "visual.blocks.6.attn.proj.weight": "model-00001-of-00002.safetensors",
778
+ "visual.blocks.6.attn.qkv.bias": "model-00001-of-00002.safetensors",
779
+ "visual.blocks.6.attn.qkv.weight": "model-00001-of-00002.safetensors",
780
+ "visual.blocks.6.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
781
+ "visual.blocks.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
782
+ "visual.blocks.6.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
783
+ "visual.blocks.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
784
+ "visual.blocks.6.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
785
+ "visual.blocks.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
786
+ "visual.blocks.6.norm1.weight": "model-00001-of-00002.safetensors",
787
+ "visual.blocks.6.norm2.weight": "model-00001-of-00002.safetensors",
788
+ "visual.blocks.7.attn.proj.bias": "model-00001-of-00002.safetensors",
789
+ "visual.blocks.7.attn.proj.weight": "model-00001-of-00002.safetensors",
790
+ "visual.blocks.7.attn.qkv.bias": "model-00001-of-00002.safetensors",
791
+ "visual.blocks.7.attn.qkv.weight": "model-00001-of-00002.safetensors",
792
+ "visual.blocks.7.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
793
+ "visual.blocks.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
794
+ "visual.blocks.7.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
795
+ "visual.blocks.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
796
+ "visual.blocks.7.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
797
+ "visual.blocks.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
798
+ "visual.blocks.7.norm1.weight": "model-00001-of-00002.safetensors",
799
+ "visual.blocks.7.norm2.weight": "model-00001-of-00002.safetensors",
800
+ "visual.blocks.8.attn.proj.bias": "model-00001-of-00002.safetensors",
801
+ "visual.blocks.8.attn.proj.weight": "model-00001-of-00002.safetensors",
802
+ "visual.blocks.8.attn.qkv.bias": "model-00001-of-00002.safetensors",
803
+ "visual.blocks.8.attn.qkv.weight": "model-00001-of-00002.safetensors",
804
+ "visual.blocks.8.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
805
+ "visual.blocks.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
806
+ "visual.blocks.8.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
807
+ "visual.blocks.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
808
+ "visual.blocks.8.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
809
+ "visual.blocks.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
810
+ "visual.blocks.8.norm1.weight": "model-00001-of-00002.safetensors",
811
+ "visual.blocks.8.norm2.weight": "model-00001-of-00002.safetensors",
812
+ "visual.blocks.9.attn.proj.bias": "model-00001-of-00002.safetensors",
813
+ "visual.blocks.9.attn.proj.weight": "model-00001-of-00002.safetensors",
814
+ "visual.blocks.9.attn.qkv.bias": "model-00001-of-00002.safetensors",
815
+ "visual.blocks.9.attn.qkv.weight": "model-00001-of-00002.safetensors",
816
+ "visual.blocks.9.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
817
+ "visual.blocks.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
818
+ "visual.blocks.9.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
819
+ "visual.blocks.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
820
+ "visual.blocks.9.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
821
+ "visual.blocks.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
822
+ "visual.blocks.9.norm1.weight": "model-00001-of-00002.safetensors",
823
+ "visual.blocks.9.norm2.weight": "model-00001-of-00002.safetensors",
824
+ "visual.merger.ln_q.weight": "model-00001-of-00002.safetensors",
825
+ "visual.merger.mlp.0.bias": "model-00001-of-00002.safetensors",
826
+ "visual.merger.mlp.0.weight": "model-00001-of-00002.safetensors",
827
+ "visual.merger.mlp.2.bias": "model-00001-of-00002.safetensors",
828
+ "visual.merger.mlp.2.weight": "model-00001-of-00002.safetensors",
829
+ "visual.patch_embed.proj.weight": "model-00001-of-00002.safetensors"
830
+ }
831
+ }
checkpoint-1400/preprocessor_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": true,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.48145466,
8
+ 0.4578275,
9
+ 0.40821073
10
+ ],
11
+ "image_processor_type": "Qwen2VLImageProcessor",
12
+ "image_std": [
13
+ 0.26862954,
14
+ 0.26130258,
15
+ 0.27577711
16
+ ],
17
+ "max_pixels": 401408,
18
+ "merge_size": 2,
19
+ "min_pixels": 3136,
20
+ "patch_size": 14,
21
+ "processor_class": "Qwen2_5_VLProcessor",
22
+ "resample": 3,
23
+ "rescale_factor": 0.00392156862745098,
24
+ "size": {
25
+ "longest_edge": 12845056,
26
+ "shortest_edge": 3136
27
+ },
28
+ "temporal_patch_size": 2
29
+ }
checkpoint-1400/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
checkpoint-1400/tokenizer_config.json ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "processor_class": "Qwen2_5_VLProcessor",
206
+ "split_special_tokens": false,
207
+ "tokenizer_class": "Qwen2Tokenizer",
208
+ "unk_token": null
209
+ }
checkpoint-1400/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1400/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1500/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-1500/chat_template.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
3
+ }
checkpoint-1500/generation_config.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "attn_implementation": "flash_attention_2",
3
+ "bos_token_id": 151643,
4
+ "do_sample": true,
5
+ "eos_token_id": [
6
+ 151645,
7
+ 151643
8
+ ],
9
+ "pad_token_id": 151643,
10
+ "repetition_penalty": 1.05,
11
+ "temperature": 0.1,
12
+ "top_k": 1,
13
+ "top_p": 0.001,
14
+ "transformers_version": "4.50.0.dev0",
15
+ "use_cache": false
16
+ }
checkpoint-1500/preprocessor_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": true,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.48145466,
8
+ 0.4578275,
9
+ 0.40821073
10
+ ],
11
+ "image_processor_type": "Qwen2VLImageProcessor",
12
+ "image_std": [
13
+ 0.26862954,
14
+ 0.26130258,
15
+ 0.27577711
16
+ ],
17
+ "max_pixels": 401408,
18
+ "merge_size": 2,
19
+ "min_pixels": 3136,
20
+ "patch_size": 14,
21
+ "processor_class": "Qwen2_5_VLProcessor",
22
+ "resample": 3,
23
+ "rescale_factor": 0.00392156862745098,
24
+ "size": {
25
+ "longest_edge": 12845056,
26
+ "shortest_edge": 3136
27
+ },
28
+ "temporal_patch_size": 2
29
+ }
checkpoint-200/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-200/chat_template.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
3
+ }
checkpoint-200/config.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-VL-3B-Instruct",
3
+ "architectures": [
4
+ "Qwen2_5_VLForConditionalGeneration"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 2048,
11
+ "image_token_id": 151655,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 11008,
14
+ "max_position_embeddings": 128000,
15
+ "max_window_layers": 70,
16
+ "model_type": "qwen2_5_vl",
17
+ "num_attention_heads": 16,
18
+ "num_hidden_layers": 36,
19
+ "num_key_value_heads": 2,
20
+ "rms_norm_eps": 1e-06,
21
+ "rope_scaling": {
22
+ "mrope_section": [
23
+ 16,
24
+ 24,
25
+ 24
26
+ ],
27
+ "rope_type": "default",
28
+ "type": "default"
29
+ },
30
+ "rope_theta": 1000000.0,
31
+ "sliding_window": 32768,
32
+ "tie_word_embeddings": true,
33
+ "torch_dtype": "bfloat16",
34
+ "transformers_version": "4.50.0.dev0",
35
+ "use_cache": false,
36
+ "use_sliding_window": false,
37
+ "video_token_id": 151656,
38
+ "vision_config": {
39
+ "hidden_size": 1280,
40
+ "in_chans": 3,
41
+ "model_type": "qwen2_5_vl",
42
+ "out_hidden_size": 2048,
43
+ "spatial_patch_size": 14,
44
+ "tokens_per_second": 2,
45
+ "torch_dtype": "float32"
46
+ },
47
+ "vision_end_token_id": 151653,
48
+ "vision_start_token_id": 151652,
49
+ "vision_token_id": 151654,
50
+ "vocab_size": 151936
51
+ }
checkpoint-200/generation_config.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "attn_implementation": "flash_attention_2",
3
+ "bos_token_id": 151643,
4
+ "do_sample": true,
5
+ "eos_token_id": [
6
+ 151645,
7
+ 151643
8
+ ],
9
+ "pad_token_id": 151643,
10
+ "repetition_penalty": 1.05,
11
+ "temperature": 0.1,
12
+ "top_k": 1,
13
+ "top_p": 0.001,
14
+ "transformers_version": "4.50.0.dev0",
15
+ "use_cache": false
16
+ }
checkpoint-200/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-200/model.safetensors.index.json ADDED
@@ -0,0 +1,831 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 7509245952
4
+ },
5
+ "weight_map": {
6
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
7
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
17
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
18
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
19
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
26
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
28
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
30
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
31
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
37
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
38
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
40
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
42
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
49
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
50
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
52
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
53
+ "model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
54
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
55
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
61
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
62
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
64
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
65
+ "model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
66
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
67
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
73
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
74
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
76
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
77
+ "model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
78
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
79
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
85
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
86
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
88
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
89
+ "model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
90
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
91
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
97
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
98
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
100
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
101
+ "model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
102
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
103
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
109
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
110
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
112
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
113
+ "model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
114
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
115
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
121
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
122
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
124
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
125
+ "model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
126
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
127
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
129
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
133
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
134
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
135
+ "model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
136
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
137
+ "model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
138
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
139
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00002.safetensors",
140
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
141
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
142
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
143
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
144
+ "model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
145
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
146
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
147
+ "model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
148
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
149
+ "model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
150
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
151
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
152
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
153
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
154
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
155
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
156
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
157
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
158
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
159
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
160
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
161
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
162
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
163
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
164
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
165
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
166
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
167
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
168
+ "model.layers.20.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
169
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
170
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
171
+ "model.layers.20.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
172
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
173
+ "model.layers.20.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
174
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
175
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
176
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
177
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
178
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
179
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
180
+ "model.layers.21.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
181
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
182
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
183
+ "model.layers.21.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
184
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
185
+ "model.layers.21.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
186
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
187
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
188
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
189
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
190
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
191
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
192
+ "model.layers.22.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
193
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
194
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
195
+ "model.layers.22.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
196
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
197
+ "model.layers.22.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
198
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
199
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
200
+ "model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
201
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
202
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
203
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
204
+ "model.layers.23.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
205
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
206
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
207
+ "model.layers.23.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
208
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
209
+ "model.layers.23.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
210
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
211
+ "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
212
+ "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
213
+ "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
214
+ "model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
215
+ "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
216
+ "model.layers.24.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
217
+ "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
218
+ "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
219
+ "model.layers.24.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
220
+ "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
221
+ "model.layers.24.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
222
+ "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
223
+ "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
224
+ "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
225
+ "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
226
+ "model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
227
+ "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
228
+ "model.layers.25.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
229
+ "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
230
+ "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
231
+ "model.layers.25.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
232
+ "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
233
+ "model.layers.25.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
234
+ "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
235
+ "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
236
+ "model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
237
+ "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
238
+ "model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
239
+ "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
240
+ "model.layers.26.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
241
+ "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
242
+ "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
243
+ "model.layers.26.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
244
+ "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
245
+ "model.layers.26.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
246
+ "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
247
+ "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
248
+ "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
249
+ "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
250
+ "model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
251
+ "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
252
+ "model.layers.27.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
253
+ "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
254
+ "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
255
+ "model.layers.27.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
256
+ "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
257
+ "model.layers.27.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
258
+ "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
259
+ "model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
260
+ "model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
261
+ "model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
262
+ "model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
263
+ "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
264
+ "model.layers.28.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
265
+ "model.layers.28.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
266
+ "model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
267
+ "model.layers.28.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
268
+ "model.layers.28.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
269
+ "model.layers.28.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
270
+ "model.layers.28.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
271
+ "model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
272
+ "model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
273
+ "model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
274
+ "model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
275
+ "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
276
+ "model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
277
+ "model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
278
+ "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
279
+ "model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
280
+ "model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
281
+ "model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
282
+ "model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
283
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
284
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
285
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
286
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
287
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
288
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
289
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
290
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
291
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
292
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
293
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
294
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
295
+ "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
296
+ "model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
297
+ "model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
298
+ "model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
299
+ "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
300
+ "model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
301
+ "model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
302
+ "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
303
+ "model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
304
+ "model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
305
+ "model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
306
+ "model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
307
+ "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
308
+ "model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
309
+ "model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
310
+ "model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
311
+ "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
312
+ "model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
313
+ "model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
314
+ "model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
315
+ "model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
316
+ "model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
317
+ "model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
318
+ "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
319
+ "model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
320
+ "model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
321
+ "model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
322
+ "model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
323
+ "model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
324
+ "model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
325
+ "model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
326
+ "model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
327
+ "model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
328
+ "model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
329
+ "model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
330
+ "model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
331
+ "model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
332
+ "model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
333
+ "model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
334
+ "model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
335
+ "model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
336
+ "model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
337
+ "model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
338
+ "model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
339
+ "model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
340
+ "model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
341
+ "model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
342
+ "model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
343
+ "model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
344
+ "model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
345
+ "model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
346
+ "model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
347
+ "model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
348
+ "model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
349
+ "model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
350
+ "model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
351
+ "model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
352
+ "model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
353
+ "model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
354
+ "model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
355
+ "model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
356
+ "model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
357
+ "model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
358
+ "model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
359
+ "model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
360
+ "model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
361
+ "model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
362
+ "model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
363
+ "model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
364
+ "model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
365
+ "model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
366
+ "model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
367
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
368
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
369
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
370
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
371
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
372
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
373
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
374
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
375
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
376
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
377
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
378
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
379
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
380
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
381
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
382
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
383
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
384
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
385
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
386
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
387
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
388
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
389
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
390
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
391
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
392
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
393
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
394
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
395
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
396
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
397
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
398
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
399
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
400
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
401
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
402
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
403
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
404
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
405
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
406
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
407
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
408
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
409
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
410
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
411
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
412
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
413
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
414
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
415
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
416
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
417
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
418
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
419
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
420
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
421
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
422
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
423
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
424
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
425
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
426
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
427
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
428
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
429
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
430
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
431
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
432
+ "model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
433
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
434
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
435
+ "model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
436
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
437
+ "model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
438
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
439
+ "model.norm.weight": "model-00002-of-00002.safetensors",
440
+ "visual.blocks.0.attn.proj.bias": "model-00001-of-00002.safetensors",
441
+ "visual.blocks.0.attn.proj.weight": "model-00001-of-00002.safetensors",
442
+ "visual.blocks.0.attn.qkv.bias": "model-00001-of-00002.safetensors",
443
+ "visual.blocks.0.attn.qkv.weight": "model-00001-of-00002.safetensors",
444
+ "visual.blocks.0.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
445
+ "visual.blocks.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
446
+ "visual.blocks.0.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
447
+ "visual.blocks.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
448
+ "visual.blocks.0.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
449
+ "visual.blocks.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
450
+ "visual.blocks.0.norm1.weight": "model-00001-of-00002.safetensors",
451
+ "visual.blocks.0.norm2.weight": "model-00001-of-00002.safetensors",
452
+ "visual.blocks.1.attn.proj.bias": "model-00001-of-00002.safetensors",
453
+ "visual.blocks.1.attn.proj.weight": "model-00001-of-00002.safetensors",
454
+ "visual.blocks.1.attn.qkv.bias": "model-00001-of-00002.safetensors",
455
+ "visual.blocks.1.attn.qkv.weight": "model-00001-of-00002.safetensors",
456
+ "visual.blocks.1.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
457
+ "visual.blocks.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
458
+ "visual.blocks.1.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
459
+ "visual.blocks.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
460
+ "visual.blocks.1.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
461
+ "visual.blocks.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
462
+ "visual.blocks.1.norm1.weight": "model-00001-of-00002.safetensors",
463
+ "visual.blocks.1.norm2.weight": "model-00001-of-00002.safetensors",
464
+ "visual.blocks.10.attn.proj.bias": "model-00001-of-00002.safetensors",
465
+ "visual.blocks.10.attn.proj.weight": "model-00001-of-00002.safetensors",
466
+ "visual.blocks.10.attn.qkv.bias": "model-00001-of-00002.safetensors",
467
+ "visual.blocks.10.attn.qkv.weight": "model-00001-of-00002.safetensors",
468
+ "visual.blocks.10.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
469
+ "visual.blocks.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
470
+ "visual.blocks.10.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
471
+ "visual.blocks.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
472
+ "visual.blocks.10.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
473
+ "visual.blocks.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
474
+ "visual.blocks.10.norm1.weight": "model-00001-of-00002.safetensors",
475
+ "visual.blocks.10.norm2.weight": "model-00001-of-00002.safetensors",
476
+ "visual.blocks.11.attn.proj.bias": "model-00001-of-00002.safetensors",
477
+ "visual.blocks.11.attn.proj.weight": "model-00001-of-00002.safetensors",
478
+ "visual.blocks.11.attn.qkv.bias": "model-00001-of-00002.safetensors",
479
+ "visual.blocks.11.attn.qkv.weight": "model-00001-of-00002.safetensors",
480
+ "visual.blocks.11.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
481
+ "visual.blocks.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
482
+ "visual.blocks.11.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
483
+ "visual.blocks.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
484
+ "visual.blocks.11.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
485
+ "visual.blocks.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
486
+ "visual.blocks.11.norm1.weight": "model-00001-of-00002.safetensors",
487
+ "visual.blocks.11.norm2.weight": "model-00001-of-00002.safetensors",
488
+ "visual.blocks.12.attn.proj.bias": "model-00001-of-00002.safetensors",
489
+ "visual.blocks.12.attn.proj.weight": "model-00001-of-00002.safetensors",
490
+ "visual.blocks.12.attn.qkv.bias": "model-00001-of-00002.safetensors",
491
+ "visual.blocks.12.attn.qkv.weight": "model-00001-of-00002.safetensors",
492
+ "visual.blocks.12.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
493
+ "visual.blocks.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
494
+ "visual.blocks.12.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
495
+ "visual.blocks.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
496
+ "visual.blocks.12.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
497
+ "visual.blocks.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
498
+ "visual.blocks.12.norm1.weight": "model-00001-of-00002.safetensors",
499
+ "visual.blocks.12.norm2.weight": "model-00001-of-00002.safetensors",
500
+ "visual.blocks.13.attn.proj.bias": "model-00001-of-00002.safetensors",
501
+ "visual.blocks.13.attn.proj.weight": "model-00001-of-00002.safetensors",
502
+ "visual.blocks.13.attn.qkv.bias": "model-00001-of-00002.safetensors",
503
+ "visual.blocks.13.attn.qkv.weight": "model-00001-of-00002.safetensors",
504
+ "visual.blocks.13.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
505
+ "visual.blocks.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
506
+ "visual.blocks.13.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
507
+ "visual.blocks.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
508
+ "visual.blocks.13.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
509
+ "visual.blocks.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
510
+ "visual.blocks.13.norm1.weight": "model-00001-of-00002.safetensors",
511
+ "visual.blocks.13.norm2.weight": "model-00001-of-00002.safetensors",
512
+ "visual.blocks.14.attn.proj.bias": "model-00001-of-00002.safetensors",
513
+ "visual.blocks.14.attn.proj.weight": "model-00001-of-00002.safetensors",
514
+ "visual.blocks.14.attn.qkv.bias": "model-00001-of-00002.safetensors",
515
+ "visual.blocks.14.attn.qkv.weight": "model-00001-of-00002.safetensors",
516
+ "visual.blocks.14.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
517
+ "visual.blocks.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
518
+ "visual.blocks.14.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
519
+ "visual.blocks.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
520
+ "visual.blocks.14.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
521
+ "visual.blocks.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
522
+ "visual.blocks.14.norm1.weight": "model-00001-of-00002.safetensors",
523
+ "visual.blocks.14.norm2.weight": "model-00001-of-00002.safetensors",
524
+ "visual.blocks.15.attn.proj.bias": "model-00001-of-00002.safetensors",
525
+ "visual.blocks.15.attn.proj.weight": "model-00001-of-00002.safetensors",
526
+ "visual.blocks.15.attn.qkv.bias": "model-00001-of-00002.safetensors",
527
+ "visual.blocks.15.attn.qkv.weight": "model-00001-of-00002.safetensors",
528
+ "visual.blocks.15.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
529
+ "visual.blocks.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
530
+ "visual.blocks.15.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
531
+ "visual.blocks.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
532
+ "visual.blocks.15.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
533
+ "visual.blocks.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
534
+ "visual.blocks.15.norm1.weight": "model-00001-of-00002.safetensors",
535
+ "visual.blocks.15.norm2.weight": "model-00001-of-00002.safetensors",
536
+ "visual.blocks.16.attn.proj.bias": "model-00001-of-00002.safetensors",
537
+ "visual.blocks.16.attn.proj.weight": "model-00001-of-00002.safetensors",
538
+ "visual.blocks.16.attn.qkv.bias": "model-00001-of-00002.safetensors",
539
+ "visual.blocks.16.attn.qkv.weight": "model-00001-of-00002.safetensors",
540
+ "visual.blocks.16.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
541
+ "visual.blocks.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
542
+ "visual.blocks.16.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
543
+ "visual.blocks.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
544
+ "visual.blocks.16.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
545
+ "visual.blocks.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
546
+ "visual.blocks.16.norm1.weight": "model-00001-of-00002.safetensors",
547
+ "visual.blocks.16.norm2.weight": "model-00001-of-00002.safetensors",
548
+ "visual.blocks.17.attn.proj.bias": "model-00001-of-00002.safetensors",
549
+ "visual.blocks.17.attn.proj.weight": "model-00001-of-00002.safetensors",
550
+ "visual.blocks.17.attn.qkv.bias": "model-00001-of-00002.safetensors",
551
+ "visual.blocks.17.attn.qkv.weight": "model-00001-of-00002.safetensors",
552
+ "visual.blocks.17.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
553
+ "visual.blocks.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
554
+ "visual.blocks.17.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
555
+ "visual.blocks.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
556
+ "visual.blocks.17.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
557
+ "visual.blocks.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
558
+ "visual.blocks.17.norm1.weight": "model-00001-of-00002.safetensors",
559
+ "visual.blocks.17.norm2.weight": "model-00001-of-00002.safetensors",
560
+ "visual.blocks.18.attn.proj.bias": "model-00001-of-00002.safetensors",
561
+ "visual.blocks.18.attn.proj.weight": "model-00001-of-00002.safetensors",
562
+ "visual.blocks.18.attn.qkv.bias": "model-00001-of-00002.safetensors",
563
+ "visual.blocks.18.attn.qkv.weight": "model-00001-of-00002.safetensors",
564
+ "visual.blocks.18.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
565
+ "visual.blocks.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
566
+ "visual.blocks.18.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
567
+ "visual.blocks.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
568
+ "visual.blocks.18.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
569
+ "visual.blocks.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
570
+ "visual.blocks.18.norm1.weight": "model-00001-of-00002.safetensors",
571
+ "visual.blocks.18.norm2.weight": "model-00001-of-00002.safetensors",
572
+ "visual.blocks.19.attn.proj.bias": "model-00001-of-00002.safetensors",
573
+ "visual.blocks.19.attn.proj.weight": "model-00001-of-00002.safetensors",
574
+ "visual.blocks.19.attn.qkv.bias": "model-00001-of-00002.safetensors",
575
+ "visual.blocks.19.attn.qkv.weight": "model-00001-of-00002.safetensors",
576
+ "visual.blocks.19.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
577
+ "visual.blocks.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
578
+ "visual.blocks.19.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
579
+ "visual.blocks.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
580
+ "visual.blocks.19.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
581
+ "visual.blocks.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
582
+ "visual.blocks.19.norm1.weight": "model-00001-of-00002.safetensors",
583
+ "visual.blocks.19.norm2.weight": "model-00001-of-00002.safetensors",
584
+ "visual.blocks.2.attn.proj.bias": "model-00001-of-00002.safetensors",
585
+ "visual.blocks.2.attn.proj.weight": "model-00001-of-00002.safetensors",
586
+ "visual.blocks.2.attn.qkv.bias": "model-00001-of-00002.safetensors",
587
+ "visual.blocks.2.attn.qkv.weight": "model-00001-of-00002.safetensors",
588
+ "visual.blocks.2.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
589
+ "visual.blocks.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
590
+ "visual.blocks.2.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
591
+ "visual.blocks.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
592
+ "visual.blocks.2.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
593
+ "visual.blocks.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
594
+ "visual.blocks.2.norm1.weight": "model-00001-of-00002.safetensors",
595
+ "visual.blocks.2.norm2.weight": "model-00001-of-00002.safetensors",
596
+ "visual.blocks.20.attn.proj.bias": "model-00001-of-00002.safetensors",
597
+ "visual.blocks.20.attn.proj.weight": "model-00001-of-00002.safetensors",
598
+ "visual.blocks.20.attn.qkv.bias": "model-00001-of-00002.safetensors",
599
+ "visual.blocks.20.attn.qkv.weight": "model-00001-of-00002.safetensors",
600
+ "visual.blocks.20.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
601
+ "visual.blocks.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
602
+ "visual.blocks.20.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
603
+ "visual.blocks.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
604
+ "visual.blocks.20.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
605
+ "visual.blocks.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
606
+ "visual.blocks.20.norm1.weight": "model-00001-of-00002.safetensors",
607
+ "visual.blocks.20.norm2.weight": "model-00001-of-00002.safetensors",
608
+ "visual.blocks.21.attn.proj.bias": "model-00001-of-00002.safetensors",
609
+ "visual.blocks.21.attn.proj.weight": "model-00001-of-00002.safetensors",
610
+ "visual.blocks.21.attn.qkv.bias": "model-00001-of-00002.safetensors",
611
+ "visual.blocks.21.attn.qkv.weight": "model-00001-of-00002.safetensors",
612
+ "visual.blocks.21.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
613
+ "visual.blocks.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
614
+ "visual.blocks.21.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
615
+ "visual.blocks.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
616
+ "visual.blocks.21.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
617
+ "visual.blocks.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
618
+ "visual.blocks.21.norm1.weight": "model-00001-of-00002.safetensors",
619
+ "visual.blocks.21.norm2.weight": "model-00001-of-00002.safetensors",
620
+ "visual.blocks.22.attn.proj.bias": "model-00001-of-00002.safetensors",
621
+ "visual.blocks.22.attn.proj.weight": "model-00001-of-00002.safetensors",
622
+ "visual.blocks.22.attn.qkv.bias": "model-00001-of-00002.safetensors",
623
+ "visual.blocks.22.attn.qkv.weight": "model-00001-of-00002.safetensors",
624
+ "visual.blocks.22.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
625
+ "visual.blocks.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
626
+ "visual.blocks.22.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
627
+ "visual.blocks.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
628
+ "visual.blocks.22.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
629
+ "visual.blocks.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
630
+ "visual.blocks.22.norm1.weight": "model-00001-of-00002.safetensors",
631
+ "visual.blocks.22.norm2.weight": "model-00001-of-00002.safetensors",
632
+ "visual.blocks.23.attn.proj.bias": "model-00001-of-00002.safetensors",
633
+ "visual.blocks.23.attn.proj.weight": "model-00001-of-00002.safetensors",
634
+ "visual.blocks.23.attn.qkv.bias": "model-00001-of-00002.safetensors",
635
+ "visual.blocks.23.attn.qkv.weight": "model-00001-of-00002.safetensors",
636
+ "visual.blocks.23.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
637
+ "visual.blocks.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
638
+ "visual.blocks.23.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
639
+ "visual.blocks.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
640
+ "visual.blocks.23.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
641
+ "visual.blocks.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
642
+ "visual.blocks.23.norm1.weight": "model-00001-of-00002.safetensors",
643
+ "visual.blocks.23.norm2.weight": "model-00001-of-00002.safetensors",
644
+ "visual.blocks.24.attn.proj.bias": "model-00001-of-00002.safetensors",
645
+ "visual.blocks.24.attn.proj.weight": "model-00001-of-00002.safetensors",
646
+ "visual.blocks.24.attn.qkv.bias": "model-00001-of-00002.safetensors",
647
+ "visual.blocks.24.attn.qkv.weight": "model-00001-of-00002.safetensors",
648
+ "visual.blocks.24.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
649
+ "visual.blocks.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
650
+ "visual.blocks.24.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
651
+ "visual.blocks.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
652
+ "visual.blocks.24.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
653
+ "visual.blocks.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
654
+ "visual.blocks.24.norm1.weight": "model-00001-of-00002.safetensors",
655
+ "visual.blocks.24.norm2.weight": "model-00001-of-00002.safetensors",
656
+ "visual.blocks.25.attn.proj.bias": "model-00001-of-00002.safetensors",
657
+ "visual.blocks.25.attn.proj.weight": "model-00001-of-00002.safetensors",
658
+ "visual.blocks.25.attn.qkv.bias": "model-00001-of-00002.safetensors",
659
+ "visual.blocks.25.attn.qkv.weight": "model-00001-of-00002.safetensors",
660
+ "visual.blocks.25.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
661
+ "visual.blocks.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
662
+ "visual.blocks.25.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
663
+ "visual.blocks.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
664
+ "visual.blocks.25.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
665
+ "visual.blocks.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
666
+ "visual.blocks.25.norm1.weight": "model-00001-of-00002.safetensors",
667
+ "visual.blocks.25.norm2.weight": "model-00001-of-00002.safetensors",
668
+ "visual.blocks.26.attn.proj.bias": "model-00001-of-00002.safetensors",
669
+ "visual.blocks.26.attn.proj.weight": "model-00001-of-00002.safetensors",
670
+ "visual.blocks.26.attn.qkv.bias": "model-00001-of-00002.safetensors",
671
+ "visual.blocks.26.attn.qkv.weight": "model-00001-of-00002.safetensors",
672
+ "visual.blocks.26.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
673
+ "visual.blocks.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
674
+ "visual.blocks.26.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
675
+ "visual.blocks.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
676
+ "visual.blocks.26.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
677
+ "visual.blocks.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
678
+ "visual.blocks.26.norm1.weight": "model-00001-of-00002.safetensors",
679
+ "visual.blocks.26.norm2.weight": "model-00001-of-00002.safetensors",
680
+ "visual.blocks.27.attn.proj.bias": "model-00001-of-00002.safetensors",
681
+ "visual.blocks.27.attn.proj.weight": "model-00001-of-00002.safetensors",
682
+ "visual.blocks.27.attn.qkv.bias": "model-00001-of-00002.safetensors",
683
+ "visual.blocks.27.attn.qkv.weight": "model-00001-of-00002.safetensors",
684
+ "visual.blocks.27.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
685
+ "visual.blocks.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
686
+ "visual.blocks.27.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
687
+ "visual.blocks.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
688
+ "visual.blocks.27.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
689
+ "visual.blocks.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
690
+ "visual.blocks.27.norm1.weight": "model-00001-of-00002.safetensors",
691
+ "visual.blocks.27.norm2.weight": "model-00001-of-00002.safetensors",
692
+ "visual.blocks.28.attn.proj.bias": "model-00001-of-00002.safetensors",
693
+ "visual.blocks.28.attn.proj.weight": "model-00001-of-00002.safetensors",
694
+ "visual.blocks.28.attn.qkv.bias": "model-00001-of-00002.safetensors",
695
+ "visual.blocks.28.attn.qkv.weight": "model-00001-of-00002.safetensors",
696
+ "visual.blocks.28.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
697
+ "visual.blocks.28.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
698
+ "visual.blocks.28.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
699
+ "visual.blocks.28.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
700
+ "visual.blocks.28.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
701
+ "visual.blocks.28.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
702
+ "visual.blocks.28.norm1.weight": "model-00001-of-00002.safetensors",
703
+ "visual.blocks.28.norm2.weight": "model-00001-of-00002.safetensors",
704
+ "visual.blocks.29.attn.proj.bias": "model-00001-of-00002.safetensors",
705
+ "visual.blocks.29.attn.proj.weight": "model-00001-of-00002.safetensors",
706
+ "visual.blocks.29.attn.qkv.bias": "model-00001-of-00002.safetensors",
707
+ "visual.blocks.29.attn.qkv.weight": "model-00001-of-00002.safetensors",
708
+ "visual.blocks.29.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
709
+ "visual.blocks.29.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
710
+ "visual.blocks.29.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
711
+ "visual.blocks.29.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
712
+ "visual.blocks.29.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
713
+ "visual.blocks.29.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
714
+ "visual.blocks.29.norm1.weight": "model-00001-of-00002.safetensors",
715
+ "visual.blocks.29.norm2.weight": "model-00001-of-00002.safetensors",
716
+ "visual.blocks.3.attn.proj.bias": "model-00001-of-00002.safetensors",
717
+ "visual.blocks.3.attn.proj.weight": "model-00001-of-00002.safetensors",
718
+ "visual.blocks.3.attn.qkv.bias": "model-00001-of-00002.safetensors",
719
+ "visual.blocks.3.attn.qkv.weight": "model-00001-of-00002.safetensors",
720
+ "visual.blocks.3.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
721
+ "visual.blocks.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
722
+ "visual.blocks.3.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
723
+ "visual.blocks.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
724
+ "visual.blocks.3.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
725
+ "visual.blocks.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
726
+ "visual.blocks.3.norm1.weight": "model-00001-of-00002.safetensors",
727
+ "visual.blocks.3.norm2.weight": "model-00001-of-00002.safetensors",
728
+ "visual.blocks.30.attn.proj.bias": "model-00001-of-00002.safetensors",
729
+ "visual.blocks.30.attn.proj.weight": "model-00001-of-00002.safetensors",
730
+ "visual.blocks.30.attn.qkv.bias": "model-00001-of-00002.safetensors",
731
+ "visual.blocks.30.attn.qkv.weight": "model-00001-of-00002.safetensors",
732
+ "visual.blocks.30.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
733
+ "visual.blocks.30.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
734
+ "visual.blocks.30.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
735
+ "visual.blocks.30.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
736
+ "visual.blocks.30.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
737
+ "visual.blocks.30.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
738
+ "visual.blocks.30.norm1.weight": "model-00001-of-00002.safetensors",
739
+ "visual.blocks.30.norm2.weight": "model-00001-of-00002.safetensors",
740
+ "visual.blocks.31.attn.proj.bias": "model-00001-of-00002.safetensors",
741
+ "visual.blocks.31.attn.proj.weight": "model-00001-of-00002.safetensors",
742
+ "visual.blocks.31.attn.qkv.bias": "model-00001-of-00002.safetensors",
743
+ "visual.blocks.31.attn.qkv.weight": "model-00001-of-00002.safetensors",
744
+ "visual.blocks.31.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
745
+ "visual.blocks.31.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
746
+ "visual.blocks.31.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
747
+ "visual.blocks.31.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
748
+ "visual.blocks.31.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
749
+ "visual.blocks.31.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
750
+ "visual.blocks.31.norm1.weight": "model-00001-of-00002.safetensors",
751
+ "visual.blocks.31.norm2.weight": "model-00001-of-00002.safetensors",
752
+ "visual.blocks.4.attn.proj.bias": "model-00001-of-00002.safetensors",
753
+ "visual.blocks.4.attn.proj.weight": "model-00001-of-00002.safetensors",
754
+ "visual.blocks.4.attn.qkv.bias": "model-00001-of-00002.safetensors",
755
+ "visual.blocks.4.attn.qkv.weight": "model-00001-of-00002.safetensors",
756
+ "visual.blocks.4.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
757
+ "visual.blocks.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
758
+ "visual.blocks.4.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
759
+ "visual.blocks.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
760
+ "visual.blocks.4.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
761
+ "visual.blocks.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
762
+ "visual.blocks.4.norm1.weight": "model-00001-of-00002.safetensors",
763
+ "visual.blocks.4.norm2.weight": "model-00001-of-00002.safetensors",
764
+ "visual.blocks.5.attn.proj.bias": "model-00001-of-00002.safetensors",
765
+ "visual.blocks.5.attn.proj.weight": "model-00001-of-00002.safetensors",
766
+ "visual.blocks.5.attn.qkv.bias": "model-00001-of-00002.safetensors",
767
+ "visual.blocks.5.attn.qkv.weight": "model-00001-of-00002.safetensors",
768
+ "visual.blocks.5.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
769
+ "visual.blocks.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
770
+ "visual.blocks.5.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
771
+ "visual.blocks.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
772
+ "visual.blocks.5.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
773
+ "visual.blocks.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
774
+ "visual.blocks.5.norm1.weight": "model-00001-of-00002.safetensors",
775
+ "visual.blocks.5.norm2.weight": "model-00001-of-00002.safetensors",
776
+ "visual.blocks.6.attn.proj.bias": "model-00001-of-00002.safetensors",
777
+ "visual.blocks.6.attn.proj.weight": "model-00001-of-00002.safetensors",
778
+ "visual.blocks.6.attn.qkv.bias": "model-00001-of-00002.safetensors",
779
+ "visual.blocks.6.attn.qkv.weight": "model-00001-of-00002.safetensors",
780
+ "visual.blocks.6.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
781
+ "visual.blocks.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
782
+ "visual.blocks.6.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
783
+ "visual.blocks.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
784
+ "visual.blocks.6.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
785
+ "visual.blocks.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
786
+ "visual.blocks.6.norm1.weight": "model-00001-of-00002.safetensors",
787
+ "visual.blocks.6.norm2.weight": "model-00001-of-00002.safetensors",
788
+ "visual.blocks.7.attn.proj.bias": "model-00001-of-00002.safetensors",
789
+ "visual.blocks.7.attn.proj.weight": "model-00001-of-00002.safetensors",
790
+ "visual.blocks.7.attn.qkv.bias": "model-00001-of-00002.safetensors",
791
+ "visual.blocks.7.attn.qkv.weight": "model-00001-of-00002.safetensors",
792
+ "visual.blocks.7.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
793
+ "visual.blocks.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
794
+ "visual.blocks.7.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
795
+ "visual.blocks.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
796
+ "visual.blocks.7.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
797
+ "visual.blocks.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
798
+ "visual.blocks.7.norm1.weight": "model-00001-of-00002.safetensors",
799
+ "visual.blocks.7.norm2.weight": "model-00001-of-00002.safetensors",
800
+ "visual.blocks.8.attn.proj.bias": "model-00001-of-00002.safetensors",
801
+ "visual.blocks.8.attn.proj.weight": "model-00001-of-00002.safetensors",
802
+ "visual.blocks.8.attn.qkv.bias": "model-00001-of-00002.safetensors",
803
+ "visual.blocks.8.attn.qkv.weight": "model-00001-of-00002.safetensors",
804
+ "visual.blocks.8.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
805
+ "visual.blocks.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
806
+ "visual.blocks.8.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
807
+ "visual.blocks.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
808
+ "visual.blocks.8.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
809
+ "visual.blocks.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
810
+ "visual.blocks.8.norm1.weight": "model-00001-of-00002.safetensors",
811
+ "visual.blocks.8.norm2.weight": "model-00001-of-00002.safetensors",
812
+ "visual.blocks.9.attn.proj.bias": "model-00001-of-00002.safetensors",
813
+ "visual.blocks.9.attn.proj.weight": "model-00001-of-00002.safetensors",
814
+ "visual.blocks.9.attn.qkv.bias": "model-00001-of-00002.safetensors",
815
+ "visual.blocks.9.attn.qkv.weight": "model-00001-of-00002.safetensors",
816
+ "visual.blocks.9.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
817
+ "visual.blocks.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
818
+ "visual.blocks.9.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
819
+ "visual.blocks.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
820
+ "visual.blocks.9.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
821
+ "visual.blocks.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
822
+ "visual.blocks.9.norm1.weight": "model-00001-of-00002.safetensors",
823
+ "visual.blocks.9.norm2.weight": "model-00001-of-00002.safetensors",
824
+ "visual.merger.ln_q.weight": "model-00001-of-00002.safetensors",
825
+ "visual.merger.mlp.0.bias": "model-00001-of-00002.safetensors",
826
+ "visual.merger.mlp.0.weight": "model-00001-of-00002.safetensors",
827
+ "visual.merger.mlp.2.bias": "model-00001-of-00002.safetensors",
828
+ "visual.merger.mlp.2.weight": "model-00001-of-00002.safetensors",
829
+ "visual.patch_embed.proj.weight": "model-00001-of-00002.safetensors"
830
+ }
831
+ }
checkpoint-200/preprocessor_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": true,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.48145466,
8
+ 0.4578275,
9
+ 0.40821073
10
+ ],
11
+ "image_processor_type": "Qwen2VLImageProcessor",
12
+ "image_std": [
13
+ 0.26862954,
14
+ 0.26130258,
15
+ 0.27577711
16
+ ],
17
+ "max_pixels": 401408,
18
+ "merge_size": 2,
19
+ "min_pixels": 3136,
20
+ "patch_size": 14,
21
+ "processor_class": "Qwen2_5_VLProcessor",
22
+ "resample": 3,
23
+ "rescale_factor": 0.00392156862745098,
24
+ "size": {
25
+ "longest_edge": 12845056,
26
+ "shortest_edge": 3136
27
+ },
28
+ "temporal_patch_size": 2
29
+ }
checkpoint-200/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
checkpoint-200/tokenizer_config.json ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "processor_class": "Qwen2_5_VLProcessor",
206
+ "split_special_tokens": false,
207
+ "tokenizer_class": "Qwen2Tokenizer",
208
+ "unk_token": null
209
+ }
checkpoint-200/trainer_state.json ADDED
@@ -0,0 +1,2833 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.01283491095780523,
5
+ "eval_steps": 500,
6
+ "global_step": 200,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "completion_length": 89.1796875,
13
+ "epoch": 6.417455478902615e-05,
14
+ "grad_norm": 6.457693642993236,
15
+ "kl": 0.0,
16
+ "learning_rate": 9.99967911692979e-07,
17
+ "loss": 0.0,
18
+ "reward": 2.8125,
19
+ "reward_std": 0.5811586081981659,
20
+ "rewards/accuracy_reward": 0.65625,
21
+ "rewards/format_count_numbers": 1.2265625,
22
+ "rewards/format_reward": 0.9296875,
23
+ "step": 1
24
+ },
25
+ {
26
+ "completion_length": 100.859375,
27
+ "epoch": 0.0001283491095780523,
28
+ "grad_norm": 3.7199479867427576,
29
+ "kl": 0.0006103515625,
30
+ "learning_rate": 9.999358233859582e-07,
31
+ "loss": 0.0,
32
+ "reward": 2.95703125,
33
+ "reward_std": 0.9970237612724304,
34
+ "rewards/accuracy_reward": 0.5,
35
+ "rewards/format_count_numbers": 1.53515625,
36
+ "rewards/format_reward": 0.921875,
37
+ "step": 2
38
+ },
39
+ {
40
+ "completion_length": 99.9609375,
41
+ "epoch": 0.00019252366436707844,
42
+ "grad_norm": 4.667048062421479,
43
+ "kl": 0.000865936279296875,
44
+ "learning_rate": 9.999037350789372e-07,
45
+ "loss": 0.0,
46
+ "reward": 2.75,
47
+ "reward_std": 0.6299314796924591,
48
+ "rewards/accuracy_reward": 0.3984375,
49
+ "rewards/format_count_numbers": 1.40625,
50
+ "rewards/format_reward": 0.9453125,
51
+ "step": 3
52
+ },
53
+ {
54
+ "completion_length": 105.375,
55
+ "epoch": 0.0002566982191561046,
56
+ "grad_norm": 6.61841287599563,
57
+ "kl": 0.000850677490234375,
58
+ "learning_rate": 9.998716467719162e-07,
59
+ "loss": 0.0,
60
+ "reward": 2.6484375,
61
+ "reward_std": 0.6614057421684265,
62
+ "rewards/accuracy_reward": 0.4453125,
63
+ "rewards/format_count_numbers": 1.2890625,
64
+ "rewards/format_reward": 0.9140625,
65
+ "step": 4
66
+ },
67
+ {
68
+ "completion_length": 98.4921875,
69
+ "epoch": 0.00032087277394513073,
70
+ "grad_norm": 10.226707577648735,
71
+ "kl": 0.001094818115234375,
72
+ "learning_rate": 9.998395584648954e-07,
73
+ "loss": 0.0,
74
+ "reward": 2.7734375,
75
+ "reward_std": 0.684965580701828,
76
+ "rewards/accuracy_reward": 0.53125,
77
+ "rewards/format_count_numbers": 1.3125,
78
+ "rewards/format_reward": 0.9296875,
79
+ "step": 5
80
+ },
81
+ {
82
+ "completion_length": 105.0078125,
83
+ "epoch": 0.0003850473287341569,
84
+ "grad_norm": 16.540801471606787,
85
+ "kl": 0.00214385986328125,
86
+ "learning_rate": 9.998074701578744e-07,
87
+ "loss": 0.0001,
88
+ "reward": 2.38671875,
89
+ "reward_std": 0.6537165194749832,
90
+ "rewards/accuracy_reward": 0.4140625,
91
+ "rewards/format_count_numbers": 1.08984375,
92
+ "rewards/format_reward": 0.8828125,
93
+ "step": 6
94
+ },
95
+ {
96
+ "completion_length": 96.6484375,
97
+ "epoch": 0.0004492218835231831,
98
+ "grad_norm": 4.007831804571436,
99
+ "kl": 0.003238677978515625,
100
+ "learning_rate": 9.997753818508536e-07,
101
+ "loss": 0.0001,
102
+ "reward": 2.85546875,
103
+ "reward_std": 0.5957659184932709,
104
+ "rewards/accuracy_reward": 0.6640625,
105
+ "rewards/format_count_numbers": 1.23828125,
106
+ "rewards/format_reward": 0.953125,
107
+ "step": 7
108
+ },
109
+ {
110
+ "completion_length": 94.6328125,
111
+ "epoch": 0.0005133964383122092,
112
+ "grad_norm": 3.3765246174936343,
113
+ "kl": 0.00238037109375,
114
+ "learning_rate": 9.997432935438326e-07,
115
+ "loss": 0.0001,
116
+ "reward": 3.05078125,
117
+ "reward_std": 0.5704643428325653,
118
+ "rewards/accuracy_reward": 0.515625,
119
+ "rewards/format_count_numbers": 1.58203125,
120
+ "rewards/format_reward": 0.953125,
121
+ "step": 8
122
+ },
123
+ {
124
+ "completion_length": 95.71875,
125
+ "epoch": 0.0005775709931012354,
126
+ "grad_norm": 3.445754640313553,
127
+ "kl": 0.0037994384765625,
128
+ "learning_rate": 9.997112052368116e-07,
129
+ "loss": 0.0002,
130
+ "reward": 2.921875,
131
+ "reward_std": 0.7348538041114807,
132
+ "rewards/accuracy_reward": 0.53125,
133
+ "rewards/format_count_numbers": 1.4453125,
134
+ "rewards/format_reward": 0.9453125,
135
+ "step": 9
136
+ },
137
+ {
138
+ "completion_length": 81.859375,
139
+ "epoch": 0.0006417455478902615,
140
+ "grad_norm": 13.788009049584414,
141
+ "kl": 0.00360870361328125,
142
+ "learning_rate": 9.996791169297908e-07,
143
+ "loss": 0.0001,
144
+ "reward": 2.41015625,
145
+ "reward_std": 0.3873346596956253,
146
+ "rewards/accuracy_reward": 0.46875,
147
+ "rewards/format_count_numbers": 0.97265625,
148
+ "rewards/format_reward": 0.96875,
149
+ "step": 10
150
+ },
151
+ {
152
+ "completion_length": 95.3515625,
153
+ "epoch": 0.0007059201026792877,
154
+ "grad_norm": 3.802264533705271,
155
+ "kl": 0.007354736328125,
156
+ "learning_rate": 9.996470286227698e-07,
157
+ "loss": 0.0003,
158
+ "reward": 3.0703125,
159
+ "reward_std": 0.5251666307449341,
160
+ "rewards/accuracy_reward": 0.5234375,
161
+ "rewards/format_count_numbers": 1.5546875,
162
+ "rewards/format_reward": 0.9921875,
163
+ "step": 11
164
+ },
165
+ {
166
+ "completion_length": 91.515625,
167
+ "epoch": 0.0007700946574683138,
168
+ "grad_norm": 7.025555072435911,
169
+ "kl": 0.0046234130859375,
170
+ "learning_rate": 9.996149403157488e-07,
171
+ "loss": 0.0002,
172
+ "reward": 3.0,
173
+ "reward_std": 0.433403342962265,
174
+ "rewards/accuracy_reward": 0.4765625,
175
+ "rewards/format_count_numbers": 1.5390625,
176
+ "rewards/format_reward": 0.984375,
177
+ "step": 12
178
+ },
179
+ {
180
+ "completion_length": 82.625,
181
+ "epoch": 0.00083426921225734,
182
+ "grad_norm": 8.089653038056108,
183
+ "kl": 0.0070648193359375,
184
+ "learning_rate": 9.99582852008728e-07,
185
+ "loss": 0.0003,
186
+ "reward": 3.3828125,
187
+ "reward_std": 0.47115227580070496,
188
+ "rewards/accuracy_reward": 0.6796875,
189
+ "rewards/format_count_numbers": 1.7109375,
190
+ "rewards/format_reward": 0.9921875,
191
+ "step": 13
192
+ },
193
+ {
194
+ "completion_length": 82.984375,
195
+ "epoch": 0.0008984437670463662,
196
+ "grad_norm": 2.6921754114824137,
197
+ "kl": 0.00640869140625,
198
+ "learning_rate": 9.99550763701707e-07,
199
+ "loss": 0.0003,
200
+ "reward": 3.25390625,
201
+ "reward_std": 0.37268710136413574,
202
+ "rewards/accuracy_reward": 0.734375,
203
+ "rewards/format_count_numbers": 1.53515625,
204
+ "rewards/format_reward": 0.984375,
205
+ "step": 14
206
+ },
207
+ {
208
+ "completion_length": 86.34375,
209
+ "epoch": 0.0009626183218353923,
210
+ "grad_norm": 5.3694361415616685,
211
+ "kl": 0.014495849609375,
212
+ "learning_rate": 9.995186753946862e-07,
213
+ "loss": 0.0006,
214
+ "reward": 2.9453125,
215
+ "reward_std": 0.3975609838962555,
216
+ "rewards/accuracy_reward": 0.71875,
217
+ "rewards/format_count_numbers": 1.234375,
218
+ "rewards/format_reward": 0.9921875,
219
+ "step": 15
220
+ },
221
+ {
222
+ "completion_length": 73.1171875,
223
+ "epoch": 0.0010267928766244184,
224
+ "grad_norm": 3.920415856048503,
225
+ "kl": 0.011138916015625,
226
+ "learning_rate": 9.994865870876652e-07,
227
+ "loss": 0.0004,
228
+ "reward": 3.05859375,
229
+ "reward_std": 0.3202301412820816,
230
+ "rewards/accuracy_reward": 0.640625,
231
+ "rewards/format_count_numbers": 1.42578125,
232
+ "rewards/format_reward": 0.9921875,
233
+ "step": 16
234
+ },
235
+ {
236
+ "completion_length": 77.875,
237
+ "epoch": 0.0010909674314134447,
238
+ "grad_norm": 4.105012934454526,
239
+ "kl": 0.007293701171875,
240
+ "learning_rate": 9.994544987806442e-07,
241
+ "loss": 0.0003,
242
+ "reward": 2.80859375,
243
+ "reward_std": 0.36826513707637787,
244
+ "rewards/accuracy_reward": 0.5390625,
245
+ "rewards/format_count_numbers": 1.26953125,
246
+ "rewards/format_reward": 1.0,
247
+ "step": 17
248
+ },
249
+ {
250
+ "completion_length": 74.1640625,
251
+ "epoch": 0.0011551419862024708,
252
+ "grad_norm": 3.025079315189922,
253
+ "kl": 0.009002685546875,
254
+ "learning_rate": 9.994224104736234e-07,
255
+ "loss": 0.0004,
256
+ "reward": 2.72265625,
257
+ "reward_std": 0.3272075057029724,
258
+ "rewards/accuracy_reward": 0.5625,
259
+ "rewards/format_count_numbers": 1.16015625,
260
+ "rewards/format_reward": 1.0,
261
+ "step": 18
262
+ },
263
+ {
264
+ "completion_length": 75.703125,
265
+ "epoch": 0.0012193165409914968,
266
+ "grad_norm": 2.702032953911433,
267
+ "kl": 0.0196685791015625,
268
+ "learning_rate": 9.993903221666024e-07,
269
+ "loss": 0.0008,
270
+ "reward": 2.99609375,
271
+ "reward_std": 0.35988467931747437,
272
+ "rewards/accuracy_reward": 0.6171875,
273
+ "rewards/format_count_numbers": 1.39453125,
274
+ "rewards/format_reward": 0.984375,
275
+ "step": 19
276
+ },
277
+ {
278
+ "completion_length": 72.75,
279
+ "epoch": 0.001283491095780523,
280
+ "grad_norm": 6.672377706898142,
281
+ "kl": 0.00946044921875,
282
+ "learning_rate": 9.993582338595814e-07,
283
+ "loss": 0.0004,
284
+ "reward": 2.78515625,
285
+ "reward_std": 0.3711431473493576,
286
+ "rewards/accuracy_reward": 0.6484375,
287
+ "rewards/format_count_numbers": 1.14453125,
288
+ "rewards/format_reward": 0.9921875,
289
+ "step": 20
290
+ },
291
+ {
292
+ "completion_length": 72.234375,
293
+ "epoch": 0.0013476656505695492,
294
+ "grad_norm": 3.21648017083967,
295
+ "kl": 0.01513671875,
296
+ "learning_rate": 9.993261455525607e-07,
297
+ "loss": 0.0006,
298
+ "reward": 3.3046875,
299
+ "reward_std": 0.3110102415084839,
300
+ "rewards/accuracy_reward": 0.6796875,
301
+ "rewards/format_count_numbers": 1.6484375,
302
+ "rewards/format_reward": 0.9765625,
303
+ "step": 21
304
+ },
305
+ {
306
+ "completion_length": 81.3203125,
307
+ "epoch": 0.0014118402053585753,
308
+ "grad_norm": 5.2036438638538405,
309
+ "kl": 0.020416259765625,
310
+ "learning_rate": 9.992940572455397e-07,
311
+ "loss": 0.0008,
312
+ "reward": 2.83203125,
313
+ "reward_std": 0.3504672795534134,
314
+ "rewards/accuracy_reward": 0.5390625,
315
+ "rewards/format_count_numbers": 1.30078125,
316
+ "rewards/format_reward": 0.9921875,
317
+ "step": 22
318
+ },
319
+ {
320
+ "completion_length": 77.3515625,
321
+ "epoch": 0.0014760147601476014,
322
+ "grad_norm": 4.546185134633502,
323
+ "kl": 0.013824462890625,
324
+ "learning_rate": 9.992619689385189e-07,
325
+ "loss": 0.0006,
326
+ "reward": 3.34375,
327
+ "reward_std": 0.3390200138092041,
328
+ "rewards/accuracy_reward": 0.7109375,
329
+ "rewards/format_count_numbers": 1.6328125,
330
+ "rewards/format_reward": 1.0,
331
+ "step": 23
332
+ },
333
+ {
334
+ "completion_length": 78.234375,
335
+ "epoch": 0.0015401893149366275,
336
+ "grad_norm": 3.663495400021626,
337
+ "kl": 0.015289306640625,
338
+ "learning_rate": 9.992298806314979e-07,
339
+ "loss": 0.0006,
340
+ "reward": 3.02734375,
341
+ "reward_std": 0.3106808215379715,
342
+ "rewards/accuracy_reward": 0.6171875,
343
+ "rewards/format_count_numbers": 1.41015625,
344
+ "rewards/format_reward": 1.0,
345
+ "step": 24
346
+ },
347
+ {
348
+ "completion_length": 85.5078125,
349
+ "epoch": 0.0016043638697256538,
350
+ "grad_norm": 4.017477734738997,
351
+ "kl": 0.009735107421875,
352
+ "learning_rate": 9.991977923244769e-07,
353
+ "loss": 0.0004,
354
+ "reward": 3.02734375,
355
+ "reward_std": 0.3911897838115692,
356
+ "rewards/accuracy_reward": 0.5,
357
+ "rewards/format_count_numbers": 1.55078125,
358
+ "rewards/format_reward": 0.9765625,
359
+ "step": 25
360
+ },
361
+ {
362
+ "completion_length": 70.953125,
363
+ "epoch": 0.00166853842451468,
364
+ "grad_norm": 131.7420509388314,
365
+ "kl": 0.01788330078125,
366
+ "learning_rate": 9.99165704017456e-07,
367
+ "loss": 0.0007,
368
+ "reward": 3.32421875,
369
+ "reward_std": 0.3377445787191391,
370
+ "rewards/accuracy_reward": 0.8125,
371
+ "rewards/format_count_numbers": 1.51953125,
372
+ "rewards/format_reward": 0.9921875,
373
+ "step": 26
374
+ },
375
+ {
376
+ "completion_length": 83.9140625,
377
+ "epoch": 0.001732712979303706,
378
+ "grad_norm": 8.203637941977545,
379
+ "kl": 0.012908935546875,
380
+ "learning_rate": 9.99133615710435e-07,
381
+ "loss": 0.0005,
382
+ "reward": 3.140625,
383
+ "reward_std": 0.31107497215270996,
384
+ "rewards/accuracy_reward": 0.609375,
385
+ "rewards/format_count_numbers": 1.53125,
386
+ "rewards/format_reward": 1.0,
387
+ "step": 27
388
+ },
389
+ {
390
+ "completion_length": 87.546875,
391
+ "epoch": 0.0017968875340927323,
392
+ "grad_norm": 3.074634047919227,
393
+ "kl": 0.01849365234375,
394
+ "learning_rate": 9.99101527403414e-07,
395
+ "loss": 0.0007,
396
+ "reward": 3.26171875,
397
+ "reward_std": 0.3248459994792938,
398
+ "rewards/accuracy_reward": 0.65625,
399
+ "rewards/format_count_numbers": 1.62109375,
400
+ "rewards/format_reward": 0.984375,
401
+ "step": 28
402
+ },
403
+ {
404
+ "completion_length": 83.1015625,
405
+ "epoch": 0.0018610620888817584,
406
+ "grad_norm": 1.7996263974927855,
407
+ "kl": 0.01739501953125,
408
+ "learning_rate": 9.990694390963933e-07,
409
+ "loss": 0.0007,
410
+ "reward": 3.36328125,
411
+ "reward_std": 0.34072481095790863,
412
+ "rewards/accuracy_reward": 0.703125,
413
+ "rewards/format_count_numbers": 1.67578125,
414
+ "rewards/format_reward": 0.984375,
415
+ "step": 29
416
+ },
417
+ {
418
+ "completion_length": 82.0390625,
419
+ "epoch": 0.0019252366436707845,
420
+ "grad_norm": 5.044487990967384,
421
+ "kl": 0.01666259765625,
422
+ "learning_rate": 9.990373507893723e-07,
423
+ "loss": 0.0007,
424
+ "reward": 3.1328125,
425
+ "reward_std": 0.3294168561697006,
426
+ "rewards/accuracy_reward": 0.59375,
427
+ "rewards/format_count_numbers": 1.546875,
428
+ "rewards/format_reward": 0.9921875,
429
+ "step": 30
430
+ },
431
+ {
432
+ "completion_length": 75.6640625,
433
+ "epoch": 0.0019894111984598106,
434
+ "grad_norm": 4.303535913004868,
435
+ "kl": 0.02020263671875,
436
+ "learning_rate": 9.990052624823513e-07,
437
+ "loss": 0.0008,
438
+ "reward": 3.14453125,
439
+ "reward_std": 0.3391089290380478,
440
+ "rewards/accuracy_reward": 0.71875,
441
+ "rewards/format_count_numbers": 1.43359375,
442
+ "rewards/format_reward": 0.9921875,
443
+ "step": 31
444
+ },
445
+ {
446
+ "completion_length": 91.375,
447
+ "epoch": 0.0020535857532488367,
448
+ "grad_norm": 3.867777936702832,
449
+ "kl": 0.0233154296875,
450
+ "learning_rate": 9.989731741753305e-07,
451
+ "loss": 0.0009,
452
+ "reward": 3.17578125,
453
+ "reward_std": 0.3817155063152313,
454
+ "rewards/accuracy_reward": 0.53125,
455
+ "rewards/format_count_numbers": 1.65234375,
456
+ "rewards/format_reward": 0.9921875,
457
+ "step": 32
458
+ },
459
+ {
460
+ "completion_length": 80.0859375,
461
+ "epoch": 0.002117760308037863,
462
+ "grad_norm": 5.660841872987584,
463
+ "kl": 0.0257568359375,
464
+ "learning_rate": 9.989410858683095e-07,
465
+ "loss": 0.001,
466
+ "reward": 3.13671875,
467
+ "reward_std": 0.3630076050758362,
468
+ "rewards/accuracy_reward": 0.6640625,
469
+ "rewards/format_count_numbers": 1.48046875,
470
+ "rewards/format_reward": 0.9921875,
471
+ "step": 33
472
+ },
473
+ {
474
+ "completion_length": 72.8828125,
475
+ "epoch": 0.0021819348628268893,
476
+ "grad_norm": 4.882900614418831,
477
+ "kl": 0.02276611328125,
478
+ "learning_rate": 9.989089975612887e-07,
479
+ "loss": 0.0009,
480
+ "reward": 2.640625,
481
+ "reward_std": 0.44960109889507294,
482
+ "rewards/accuracy_reward": 0.484375,
483
+ "rewards/format_count_numbers": 1.1640625,
484
+ "rewards/format_reward": 0.9921875,
485
+ "step": 34
486
+ },
487
+ {
488
+ "completion_length": 80.9296875,
489
+ "epoch": 0.0022461094176159154,
490
+ "grad_norm": 4.3133118366946475,
491
+ "kl": 0.02490234375,
492
+ "learning_rate": 9.988769092542677e-07,
493
+ "loss": 0.001,
494
+ "reward": 3.453125,
495
+ "reward_std": 0.3391571342945099,
496
+ "rewards/accuracy_reward": 0.6796875,
497
+ "rewards/format_count_numbers": 1.7734375,
498
+ "rewards/format_reward": 1.0,
499
+ "step": 35
500
+ },
501
+ {
502
+ "completion_length": 89.9609375,
503
+ "epoch": 0.0023102839724049415,
504
+ "grad_norm": 6.955721387397482,
505
+ "kl": 0.01922607421875,
506
+ "learning_rate": 9.988448209472467e-07,
507
+ "loss": 0.0008,
508
+ "reward": 2.87890625,
509
+ "reward_std": 0.2806504964828491,
510
+ "rewards/accuracy_reward": 0.4765625,
511
+ "rewards/format_count_numbers": 1.40234375,
512
+ "rewards/format_reward": 1.0,
513
+ "step": 36
514
+ },
515
+ {
516
+ "completion_length": 74.5390625,
517
+ "epoch": 0.0023744585271939676,
518
+ "grad_norm": 4.861590830565515,
519
+ "kl": 0.02423095703125,
520
+ "learning_rate": 9.988127326402257e-07,
521
+ "loss": 0.001,
522
+ "reward": 3.06640625,
523
+ "reward_std": 0.2550649642944336,
524
+ "rewards/accuracy_reward": 0.6328125,
525
+ "rewards/format_count_numbers": 1.43359375,
526
+ "rewards/format_reward": 1.0,
527
+ "step": 37
528
+ },
529
+ {
530
+ "completion_length": 73.921875,
531
+ "epoch": 0.0024386330819829937,
532
+ "grad_norm": 2.854709944808263,
533
+ "kl": 0.02410888671875,
534
+ "learning_rate": 9.98780644333205e-07,
535
+ "loss": 0.001,
536
+ "reward": 2.8984375,
537
+ "reward_std": 0.3886113613843918,
538
+ "rewards/accuracy_reward": 0.6171875,
539
+ "rewards/format_count_numbers": 1.296875,
540
+ "rewards/format_reward": 0.984375,
541
+ "step": 38
542
+ },
543
+ {
544
+ "completion_length": 70.9609375,
545
+ "epoch": 0.00250280763677202,
546
+ "grad_norm": 3.5923630444215755,
547
+ "kl": 0.0277099609375,
548
+ "learning_rate": 9.98748556026184e-07,
549
+ "loss": 0.0011,
550
+ "reward": 3.2265625,
551
+ "reward_std": 0.2659813463687897,
552
+ "rewards/accuracy_reward": 0.765625,
553
+ "rewards/format_count_numbers": 1.4609375,
554
+ "rewards/format_reward": 1.0,
555
+ "step": 39
556
+ },
557
+ {
558
+ "completion_length": 66.390625,
559
+ "epoch": 0.002566982191561046,
560
+ "grad_norm": 3.041742830092947,
561
+ "kl": 0.02459716796875,
562
+ "learning_rate": 9.987164677191631e-07,
563
+ "loss": 0.001,
564
+ "reward": 3.296875,
565
+ "reward_std": 0.2199605107307434,
566
+ "rewards/accuracy_reward": 0.7109375,
567
+ "rewards/format_count_numbers": 1.59375,
568
+ "rewards/format_reward": 0.9921875,
569
+ "step": 40
570
+ },
571
+ {
572
+ "completion_length": 74.828125,
573
+ "epoch": 0.0026311567463500724,
574
+ "grad_norm": 3.3807511168475717,
575
+ "kl": 0.0289306640625,
576
+ "learning_rate": 9.986843794121421e-07,
577
+ "loss": 0.0012,
578
+ "reward": 3.30078125,
579
+ "reward_std": 0.34865450859069824,
580
+ "rewards/accuracy_reward": 0.6015625,
581
+ "rewards/format_count_numbers": 1.69921875,
582
+ "rewards/format_reward": 1.0,
583
+ "step": 41
584
+ },
585
+ {
586
+ "completion_length": 89.6953125,
587
+ "epoch": 0.0026953313011390985,
588
+ "grad_norm": 1.9360780618011337,
589
+ "kl": 0.02545166015625,
590
+ "learning_rate": 9.986522911051214e-07,
591
+ "loss": 0.001,
592
+ "reward": 3.07421875,
593
+ "reward_std": 0.24038218706846237,
594
+ "rewards/accuracy_reward": 0.546875,
595
+ "rewards/format_count_numbers": 1.52734375,
596
+ "rewards/format_reward": 1.0,
597
+ "step": 42
598
+ },
599
+ {
600
+ "completion_length": 71.140625,
601
+ "epoch": 0.0027595058559281246,
602
+ "grad_norm": 2.522942068290189,
603
+ "kl": 0.033447265625,
604
+ "learning_rate": 9.986202027981004e-07,
605
+ "loss": 0.0013,
606
+ "reward": 3.234375,
607
+ "reward_std": 0.30629581212997437,
608
+ "rewards/accuracy_reward": 0.5234375,
609
+ "rewards/format_count_numbers": 1.7109375,
610
+ "rewards/format_reward": 1.0,
611
+ "step": 43
612
+ },
613
+ {
614
+ "completion_length": 76.5703125,
615
+ "epoch": 0.0028236804107171507,
616
+ "grad_norm": 2.7470688462972572,
617
+ "kl": 0.026123046875,
618
+ "learning_rate": 9.985881144910794e-07,
619
+ "loss": 0.001,
620
+ "reward": 3.25,
621
+ "reward_std": 0.30682672560214996,
622
+ "rewards/accuracy_reward": 0.5625,
623
+ "rewards/format_count_numbers": 1.7109375,
624
+ "rewards/format_reward": 0.9765625,
625
+ "step": 44
626
+ },
627
+ {
628
+ "completion_length": 83.8046875,
629
+ "epoch": 0.0028878549655061768,
630
+ "grad_norm": 2.4739700610037985,
631
+ "kl": 0.02978515625,
632
+ "learning_rate": 9.985560261840584e-07,
633
+ "loss": 0.0012,
634
+ "reward": 3.05078125,
635
+ "reward_std": 0.29518504440784454,
636
+ "rewards/accuracy_reward": 0.578125,
637
+ "rewards/format_count_numbers": 1.48046875,
638
+ "rewards/format_reward": 0.9921875,
639
+ "step": 45
640
+ },
641
+ {
642
+ "completion_length": 65.40625,
643
+ "epoch": 0.002952029520295203,
644
+ "grad_norm": 3.690551370084788,
645
+ "kl": 0.0428466796875,
646
+ "learning_rate": 9.985239378770376e-07,
647
+ "loss": 0.0017,
648
+ "reward": 3.17578125,
649
+ "reward_std": 0.30267418175935745,
650
+ "rewards/accuracy_reward": 0.859375,
651
+ "rewards/format_count_numbers": 1.32421875,
652
+ "rewards/format_reward": 0.9921875,
653
+ "step": 46
654
+ },
655
+ {
656
+ "completion_length": 69.03125,
657
+ "epoch": 0.003016204075084229,
658
+ "grad_norm": 4.382403144838998,
659
+ "kl": 0.0341796875,
660
+ "learning_rate": 9.984918495700166e-07,
661
+ "loss": 0.0014,
662
+ "reward": 3.484375,
663
+ "reward_std": 0.23816770315170288,
664
+ "rewards/accuracy_reward": 0.78125,
665
+ "rewards/format_count_numbers": 1.703125,
666
+ "rewards/format_reward": 1.0,
667
+ "step": 47
668
+ },
669
+ {
670
+ "completion_length": 68.015625,
671
+ "epoch": 0.003080378629873255,
672
+ "grad_norm": 3.452349900499519,
673
+ "kl": 0.0255126953125,
674
+ "learning_rate": 9.984597612629958e-07,
675
+ "loss": 0.001,
676
+ "reward": 2.97265625,
677
+ "reward_std": 0.32505670189857483,
678
+ "rewards/accuracy_reward": 0.6328125,
679
+ "rewards/format_count_numbers": 1.33984375,
680
+ "rewards/format_reward": 1.0,
681
+ "step": 48
682
+ },
683
+ {
684
+ "completion_length": 75.1953125,
685
+ "epoch": 0.0031445531846622816,
686
+ "grad_norm": 3.392241748989927,
687
+ "kl": 0.03125,
688
+ "learning_rate": 9.984276729559748e-07,
689
+ "loss": 0.0012,
690
+ "reward": 3.10546875,
691
+ "reward_std": 0.39815399050712585,
692
+ "rewards/accuracy_reward": 0.6796875,
693
+ "rewards/format_count_numbers": 1.42578125,
694
+ "rewards/format_reward": 1.0,
695
+ "step": 49
696
+ },
697
+ {
698
+ "completion_length": 67.9765625,
699
+ "epoch": 0.0032087277394513077,
700
+ "grad_norm": 2.177945178884684,
701
+ "kl": 0.047607421875,
702
+ "learning_rate": 9.98395584648954e-07,
703
+ "loss": 0.0019,
704
+ "reward": 2.953125,
705
+ "reward_std": 0.2759072184562683,
706
+ "rewards/accuracy_reward": 0.609375,
707
+ "rewards/format_count_numbers": 1.34375,
708
+ "rewards/format_reward": 1.0,
709
+ "step": 50
710
+ },
711
+ {
712
+ "completion_length": 78.390625,
713
+ "epoch": 0.0032729022942403338,
714
+ "grad_norm": 3.0857042332441456,
715
+ "kl": 0.0269775390625,
716
+ "learning_rate": 9.98363496341933e-07,
717
+ "loss": 0.0011,
718
+ "reward": 2.890625,
719
+ "reward_std": 0.27773458510637283,
720
+ "rewards/accuracy_reward": 0.4296875,
721
+ "rewards/format_count_numbers": 1.4609375,
722
+ "rewards/format_reward": 1.0,
723
+ "step": 51
724
+ },
725
+ {
726
+ "completion_length": 67.046875,
727
+ "epoch": 0.00333707684902936,
728
+ "grad_norm": 5.440745248958781,
729
+ "kl": 0.13043212890625,
730
+ "learning_rate": 9.98331408034912e-07,
731
+ "loss": 0.0052,
732
+ "reward": 2.921875,
733
+ "reward_std": 0.3226177394390106,
734
+ "rewards/accuracy_reward": 0.6015625,
735
+ "rewards/format_count_numbers": 1.3359375,
736
+ "rewards/format_reward": 0.984375,
737
+ "step": 52
738
+ },
739
+ {
740
+ "completion_length": 66.4375,
741
+ "epoch": 0.003401251403818386,
742
+ "grad_norm": 4.657297519762943,
743
+ "kl": 0.041259765625,
744
+ "learning_rate": 9.982993197278912e-07,
745
+ "loss": 0.0017,
746
+ "reward": 3.25,
747
+ "reward_std": 0.3035288602113724,
748
+ "rewards/accuracy_reward": 0.578125,
749
+ "rewards/format_count_numbers": 1.671875,
750
+ "rewards/format_reward": 1.0,
751
+ "step": 53
752
+ },
753
+ {
754
+ "completion_length": 70.2265625,
755
+ "epoch": 0.003465425958607412,
756
+ "grad_norm": 2.3261413114277727,
757
+ "kl": 0.048583984375,
758
+ "learning_rate": 9.982672314208702e-07,
759
+ "loss": 0.0019,
760
+ "reward": 3.48046875,
761
+ "reward_std": 0.2077426016330719,
762
+ "rewards/accuracy_reward": 0.65625,
763
+ "rewards/format_count_numbers": 1.82421875,
764
+ "rewards/format_reward": 1.0,
765
+ "step": 54
766
+ },
767
+ {
768
+ "completion_length": 69.4765625,
769
+ "epoch": 0.003529600513396438,
770
+ "grad_norm": 12.890917932396162,
771
+ "kl": 0.045166015625,
772
+ "learning_rate": 9.982351431138492e-07,
773
+ "loss": 0.0018,
774
+ "reward": 3.34765625,
775
+ "reward_std": 0.25980181246995926,
776
+ "rewards/accuracy_reward": 0.640625,
777
+ "rewards/format_count_numbers": 1.70703125,
778
+ "rewards/format_reward": 1.0,
779
+ "step": 55
780
+ },
781
+ {
782
+ "completion_length": 70.75,
783
+ "epoch": 0.0035937750681854647,
784
+ "grad_norm": 2.3924995403034814,
785
+ "kl": 0.0390625,
786
+ "learning_rate": 9.982030548068284e-07,
787
+ "loss": 0.0016,
788
+ "reward": 2.83203125,
789
+ "reward_std": 0.2434411644935608,
790
+ "rewards/accuracy_reward": 0.6484375,
791
+ "rewards/format_count_numbers": 1.18359375,
792
+ "rewards/format_reward": 1.0,
793
+ "step": 56
794
+ },
795
+ {
796
+ "completion_length": 78.265625,
797
+ "epoch": 0.0036579496229744908,
798
+ "grad_norm": 4.097074998616903,
799
+ "kl": 0.0467529296875,
800
+ "learning_rate": 9.981709664998074e-07,
801
+ "loss": 0.0019,
802
+ "reward": 3.16796875,
803
+ "reward_std": 0.323630690574646,
804
+ "rewards/accuracy_reward": 0.625,
805
+ "rewards/format_count_numbers": 1.54296875,
806
+ "rewards/format_reward": 1.0,
807
+ "step": 57
808
+ },
809
+ {
810
+ "completion_length": 64.4453125,
811
+ "epoch": 0.003722124177763517,
812
+ "grad_norm": 2.8596095528212815,
813
+ "kl": 0.045166015625,
814
+ "learning_rate": 9.981388781927866e-07,
815
+ "loss": 0.0018,
816
+ "reward": 2.99609375,
817
+ "reward_std": 0.3102172762155533,
818
+ "rewards/accuracy_reward": 0.5390625,
819
+ "rewards/format_count_numbers": 1.45703125,
820
+ "rewards/format_reward": 1.0,
821
+ "step": 58
822
+ },
823
+ {
824
+ "completion_length": 64.9375,
825
+ "epoch": 0.003786298732552543,
826
+ "grad_norm": 2.728196990192836,
827
+ "kl": 0.0457763671875,
828
+ "learning_rate": 9.981067898857656e-07,
829
+ "loss": 0.0018,
830
+ "reward": 2.9609375,
831
+ "reward_std": 0.2459762617945671,
832
+ "rewards/accuracy_reward": 0.609375,
833
+ "rewards/format_count_numbers": 1.3515625,
834
+ "rewards/format_reward": 1.0,
835
+ "step": 59
836
+ },
837
+ {
838
+ "completion_length": 69.0625,
839
+ "epoch": 0.003850473287341569,
840
+ "grad_norm": 3.4406926961923587,
841
+ "kl": 0.03759765625,
842
+ "learning_rate": 9.980747015787446e-07,
843
+ "loss": 0.0015,
844
+ "reward": 2.87109375,
845
+ "reward_std": 0.34723127633333206,
846
+ "rewards/accuracy_reward": 0.6640625,
847
+ "rewards/format_count_numbers": 1.21484375,
848
+ "rewards/format_reward": 0.9921875,
849
+ "step": 60
850
+ },
851
+ {
852
+ "completion_length": 66.5390625,
853
+ "epoch": 0.0039146478421305956,
854
+ "grad_norm": 3.057262479255094,
855
+ "kl": 0.043212890625,
856
+ "learning_rate": 9.980426132717238e-07,
857
+ "loss": 0.0017,
858
+ "reward": 3.38671875,
859
+ "reward_std": 0.22124166041612625,
860
+ "rewards/accuracy_reward": 0.671875,
861
+ "rewards/format_count_numbers": 1.71484375,
862
+ "rewards/format_reward": 1.0,
863
+ "step": 61
864
+ },
865
+ {
866
+ "completion_length": 84.8125,
867
+ "epoch": 0.003978822396919621,
868
+ "grad_norm": 6.416434548752605,
869
+ "kl": 0.0321044921875,
870
+ "learning_rate": 9.980105249647028e-07,
871
+ "loss": 0.0013,
872
+ "reward": 3.08984375,
873
+ "reward_std": 0.32453496754169464,
874
+ "rewards/accuracy_reward": 0.4453125,
875
+ "rewards/format_count_numbers": 1.64453125,
876
+ "rewards/format_reward": 1.0,
877
+ "step": 62
878
+ },
879
+ {
880
+ "completion_length": 77.1953125,
881
+ "epoch": 0.004042996951708648,
882
+ "grad_norm": 3.732769709996209,
883
+ "kl": 0.037841796875,
884
+ "learning_rate": 9.979784366576818e-07,
885
+ "loss": 0.0015,
886
+ "reward": 3.1015625,
887
+ "reward_std": 0.35314419865608215,
888
+ "rewards/accuracy_reward": 0.53125,
889
+ "rewards/format_count_numbers": 1.5703125,
890
+ "rewards/format_reward": 1.0,
891
+ "step": 63
892
+ },
893
+ {
894
+ "completion_length": 77.5,
895
+ "epoch": 0.004107171506497673,
896
+ "grad_norm": 2.5167684293651877,
897
+ "kl": 0.0311279296875,
898
+ "learning_rate": 9.979463483506608e-07,
899
+ "loss": 0.0012,
900
+ "reward": 3.10546875,
901
+ "reward_std": 0.2587262690067291,
902
+ "rewards/accuracy_reward": 0.5078125,
903
+ "rewards/format_count_numbers": 1.60546875,
904
+ "rewards/format_reward": 0.9921875,
905
+ "step": 64
906
+ },
907
+ {
908
+ "completion_length": 70.609375,
909
+ "epoch": 0.0041713460612867,
910
+ "grad_norm": 7.497854848230895,
911
+ "kl": 0.03466796875,
912
+ "learning_rate": 9.9791426004364e-07,
913
+ "loss": 0.0014,
914
+ "reward": 3.12109375,
915
+ "reward_std": 0.35663464665412903,
916
+ "rewards/accuracy_reward": 0.6640625,
917
+ "rewards/format_count_numbers": 1.45703125,
918
+ "rewards/format_reward": 1.0,
919
+ "step": 65
920
+ },
921
+ {
922
+ "completion_length": 67.3359375,
923
+ "epoch": 0.004235520616075726,
924
+ "grad_norm": 12.830822241443972,
925
+ "kl": 0.118408203125,
926
+ "learning_rate": 9.97882171736619e-07,
927
+ "loss": 0.0047,
928
+ "reward": 3.08984375,
929
+ "reward_std": 0.2815767228603363,
930
+ "rewards/accuracy_reward": 0.7265625,
931
+ "rewards/format_count_numbers": 1.36328125,
932
+ "rewards/format_reward": 1.0,
933
+ "step": 66
934
+ },
935
+ {
936
+ "completion_length": 80.15625,
937
+ "epoch": 0.004299695170864752,
938
+ "grad_norm": 6.252660074852895,
939
+ "kl": 0.03729248046875,
940
+ "learning_rate": 9.978500834295983e-07,
941
+ "loss": 0.0015,
942
+ "reward": 3.5703125,
943
+ "reward_std": 0.21104412525892258,
944
+ "rewards/accuracy_reward": 0.609375,
945
+ "rewards/format_count_numbers": 1.9609375,
946
+ "rewards/format_reward": 1.0,
947
+ "step": 67
948
+ },
949
+ {
950
+ "completion_length": 72.375,
951
+ "epoch": 0.004363869725653779,
952
+ "grad_norm": 2.346394602052095,
953
+ "kl": 0.025146484375,
954
+ "learning_rate": 9.978179951225773e-07,
955
+ "loss": 0.001,
956
+ "reward": 3.26171875,
957
+ "reward_std": 0.2549284026026726,
958
+ "rewards/accuracy_reward": 0.7734375,
959
+ "rewards/format_count_numbers": 1.48828125,
960
+ "rewards/format_reward": 1.0,
961
+ "step": 68
962
+ },
963
+ {
964
+ "completion_length": 80.0078125,
965
+ "epoch": 0.004428044280442804,
966
+ "grad_norm": 6.9747477147107775,
967
+ "kl": 0.053955078125,
968
+ "learning_rate": 9.977859068155565e-07,
969
+ "loss": 0.0022,
970
+ "reward": 3.1171875,
971
+ "reward_std": 0.23806139826774597,
972
+ "rewards/accuracy_reward": 0.5625,
973
+ "rewards/format_count_numbers": 1.5546875,
974
+ "rewards/format_reward": 1.0,
975
+ "step": 69
976
+ },
977
+ {
978
+ "completion_length": 76.78125,
979
+ "epoch": 0.004492218835231831,
980
+ "grad_norm": 4.378472876328936,
981
+ "kl": 0.029541015625,
982
+ "learning_rate": 9.977538185085355e-07,
983
+ "loss": 0.0012,
984
+ "reward": 2.93359375,
985
+ "reward_std": 0.19287973642349243,
986
+ "rewards/accuracy_reward": 0.609375,
987
+ "rewards/format_count_numbers": 1.33984375,
988
+ "rewards/format_reward": 0.984375,
989
+ "step": 70
990
+ },
991
+ {
992
+ "completion_length": 74.171875,
993
+ "epoch": 0.0045563933900208565,
994
+ "grad_norm": 2.358606331460238,
995
+ "kl": 0.0230712890625,
996
+ "learning_rate": 9.977217302015145e-07,
997
+ "loss": 0.0009,
998
+ "reward": 3.54296875,
999
+ "reward_std": 0.26491738110780716,
1000
+ "rewards/accuracy_reward": 0.8046875,
1001
+ "rewards/format_count_numbers": 1.73828125,
1002
+ "rewards/format_reward": 1.0,
1003
+ "step": 71
1004
+ },
1005
+ {
1006
+ "completion_length": 75.34375,
1007
+ "epoch": 0.004620567944809883,
1008
+ "grad_norm": 65.47310912953631,
1009
+ "kl": 0.03179931640625,
1010
+ "learning_rate": 9.976896418944935e-07,
1011
+ "loss": 0.0013,
1012
+ "reward": 2.78125,
1013
+ "reward_std": 0.29492397606372833,
1014
+ "rewards/accuracy_reward": 0.546875,
1015
+ "rewards/format_count_numbers": 1.234375,
1016
+ "rewards/format_reward": 1.0,
1017
+ "step": 72
1018
+ },
1019
+ {
1020
+ "completion_length": 76.921875,
1021
+ "epoch": 0.004684742499598909,
1022
+ "grad_norm": 3.27041300953387,
1023
+ "kl": 0.0367431640625,
1024
+ "learning_rate": 9.976575535874727e-07,
1025
+ "loss": 0.0015,
1026
+ "reward": 3.33203125,
1027
+ "reward_std": 0.2555892765522003,
1028
+ "rewards/accuracy_reward": 0.734375,
1029
+ "rewards/format_count_numbers": 1.59765625,
1030
+ "rewards/format_reward": 1.0,
1031
+ "step": 73
1032
+ },
1033
+ {
1034
+ "completion_length": 67.484375,
1035
+ "epoch": 0.004748917054387935,
1036
+ "grad_norm": 5.812215039650067,
1037
+ "kl": 0.03240966796875,
1038
+ "learning_rate": 9.976254652804517e-07,
1039
+ "loss": 0.0013,
1040
+ "reward": 3.43359375,
1041
+ "reward_std": 0.20885366201400757,
1042
+ "rewards/accuracy_reward": 0.8125,
1043
+ "rewards/format_count_numbers": 1.62109375,
1044
+ "rewards/format_reward": 1.0,
1045
+ "step": 74
1046
+ },
1047
+ {
1048
+ "completion_length": 82.4921875,
1049
+ "epoch": 0.004813091609176962,
1050
+ "grad_norm": 4.4277516048263506,
1051
+ "kl": 0.0313720703125,
1052
+ "learning_rate": 9.97593376973431e-07,
1053
+ "loss": 0.0013,
1054
+ "reward": 3.2734375,
1055
+ "reward_std": 0.19161942601203918,
1056
+ "rewards/accuracy_reward": 0.7109375,
1057
+ "rewards/format_count_numbers": 1.5625,
1058
+ "rewards/format_reward": 1.0,
1059
+ "step": 75
1060
+ },
1061
+ {
1062
+ "completion_length": 67.109375,
1063
+ "epoch": 0.004877266163965987,
1064
+ "grad_norm": 3.0595066417538415,
1065
+ "kl": 0.04052734375,
1066
+ "learning_rate": 9.9756128866641e-07,
1067
+ "loss": 0.0016,
1068
+ "reward": 3.5625,
1069
+ "reward_std": 0.32848016172647476,
1070
+ "rewards/accuracy_reward": 0.71875,
1071
+ "rewards/format_count_numbers": 1.84375,
1072
+ "rewards/format_reward": 1.0,
1073
+ "step": 76
1074
+ },
1075
+ {
1076
+ "completion_length": 82.9921875,
1077
+ "epoch": 0.004941440718755014,
1078
+ "grad_norm": 3.999806146457781,
1079
+ "kl": 0.0372314453125,
1080
+ "learning_rate": 9.975292003593891e-07,
1081
+ "loss": 0.0015,
1082
+ "reward": 3.0546875,
1083
+ "reward_std": 0.2797150984406471,
1084
+ "rewards/accuracy_reward": 0.4921875,
1085
+ "rewards/format_count_numbers": 1.5703125,
1086
+ "rewards/format_reward": 0.9921875,
1087
+ "step": 77
1088
+ },
1089
+ {
1090
+ "completion_length": 75.265625,
1091
+ "epoch": 0.00500561527354404,
1092
+ "grad_norm": 2.4007654591592953,
1093
+ "kl": 0.02508544921875,
1094
+ "learning_rate": 9.974971120523681e-07,
1095
+ "loss": 0.001,
1096
+ "reward": 3.30859375,
1097
+ "reward_std": 0.21722427010536194,
1098
+ "rewards/accuracy_reward": 0.7109375,
1099
+ "rewards/format_count_numbers": 1.59765625,
1100
+ "rewards/format_reward": 1.0,
1101
+ "step": 78
1102
+ },
1103
+ {
1104
+ "completion_length": 69.8671875,
1105
+ "epoch": 0.005069789828333066,
1106
+ "grad_norm": 4.413870539754506,
1107
+ "kl": 0.0401611328125,
1108
+ "learning_rate": 9.974650237453471e-07,
1109
+ "loss": 0.0016,
1110
+ "reward": 3.09765625,
1111
+ "reward_std": 0.24370676279067993,
1112
+ "rewards/accuracy_reward": 0.640625,
1113
+ "rewards/format_count_numbers": 1.46484375,
1114
+ "rewards/format_reward": 0.9921875,
1115
+ "step": 79
1116
+ },
1117
+ {
1118
+ "completion_length": 71.3828125,
1119
+ "epoch": 0.005133964383122092,
1120
+ "grad_norm": 2.7469356159448375,
1121
+ "kl": 0.03594970703125,
1122
+ "learning_rate": 9.974329354383261e-07,
1123
+ "loss": 0.0014,
1124
+ "reward": 3.359375,
1125
+ "reward_std": 0.28942976146936417,
1126
+ "rewards/accuracy_reward": 0.765625,
1127
+ "rewards/format_count_numbers": 1.59375,
1128
+ "rewards/format_reward": 1.0,
1129
+ "step": 80
1130
+ },
1131
+ {
1132
+ "completion_length": 71.6875,
1133
+ "epoch": 0.005198138937911118,
1134
+ "grad_norm": 4.694669178987162,
1135
+ "kl": 0.04248046875,
1136
+ "learning_rate": 9.974008471313053e-07,
1137
+ "loss": 0.0017,
1138
+ "reward": 3.09765625,
1139
+ "reward_std": 0.3313465863466263,
1140
+ "rewards/accuracy_reward": 0.640625,
1141
+ "rewards/format_count_numbers": 1.46484375,
1142
+ "rewards/format_reward": 0.9921875,
1143
+ "step": 81
1144
+ },
1145
+ {
1146
+ "completion_length": 71.9375,
1147
+ "epoch": 0.005262313492700145,
1148
+ "grad_norm": 5.239839542228686,
1149
+ "kl": 0.0465087890625,
1150
+ "learning_rate": 9.973687588242843e-07,
1151
+ "loss": 0.0019,
1152
+ "reward": 3.40234375,
1153
+ "reward_std": 0.2555918022990227,
1154
+ "rewards/accuracy_reward": 0.5625,
1155
+ "rewards/format_count_numbers": 1.84765625,
1156
+ "rewards/format_reward": 0.9921875,
1157
+ "step": 82
1158
+ },
1159
+ {
1160
+ "completion_length": 66.59375,
1161
+ "epoch": 0.0053264880474891705,
1162
+ "grad_norm": 9.58228205262393,
1163
+ "kl": 0.03302001953125,
1164
+ "learning_rate": 9.973366705172635e-07,
1165
+ "loss": 0.0013,
1166
+ "reward": 3.328125,
1167
+ "reward_std": 0.27802956849336624,
1168
+ "rewards/accuracy_reward": 0.7109375,
1169
+ "rewards/format_count_numbers": 1.6171875,
1170
+ "rewards/format_reward": 1.0,
1171
+ "step": 83
1172
+ },
1173
+ {
1174
+ "completion_length": 73.7734375,
1175
+ "epoch": 0.005390662602278197,
1176
+ "grad_norm": 5.487582516234903,
1177
+ "kl": 0.0311279296875,
1178
+ "learning_rate": 9.973045822102425e-07,
1179
+ "loss": 0.0012,
1180
+ "reward": 3.28515625,
1181
+ "reward_std": 0.24403482675552368,
1182
+ "rewards/accuracy_reward": 0.5625,
1183
+ "rewards/format_count_numbers": 1.72265625,
1184
+ "rewards/format_reward": 1.0,
1185
+ "step": 84
1186
+ },
1187
+ {
1188
+ "completion_length": 77.0859375,
1189
+ "epoch": 0.005454837157067223,
1190
+ "grad_norm": 2.8797110234241217,
1191
+ "kl": 0.03607177734375,
1192
+ "learning_rate": 9.972724939032218e-07,
1193
+ "loss": 0.0014,
1194
+ "reward": 3.4296875,
1195
+ "reward_std": 0.3189963102340698,
1196
+ "rewards/accuracy_reward": 0.7109375,
1197
+ "rewards/format_count_numbers": 1.734375,
1198
+ "rewards/format_reward": 0.984375,
1199
+ "step": 85
1200
+ },
1201
+ {
1202
+ "completion_length": 71.2734375,
1203
+ "epoch": 0.005519011711856249,
1204
+ "grad_norm": 3.495421949980677,
1205
+ "kl": 0.043212890625,
1206
+ "learning_rate": 9.972404055962008e-07,
1207
+ "loss": 0.0017,
1208
+ "reward": 3.0625,
1209
+ "reward_std": 0.30399875342845917,
1210
+ "rewards/accuracy_reward": 0.5859375,
1211
+ "rewards/format_count_numbers": 1.484375,
1212
+ "rewards/format_reward": 0.9921875,
1213
+ "step": 86
1214
+ },
1215
+ {
1216
+ "completion_length": 67.015625,
1217
+ "epoch": 0.005583186266645275,
1218
+ "grad_norm": 6.764316503209916,
1219
+ "kl": 0.0382080078125,
1220
+ "learning_rate": 9.972083172891798e-07,
1221
+ "loss": 0.0015,
1222
+ "reward": 2.8671875,
1223
+ "reward_std": 0.3235751837491989,
1224
+ "rewards/accuracy_reward": 0.546875,
1225
+ "rewards/format_count_numbers": 1.3359375,
1226
+ "rewards/format_reward": 0.984375,
1227
+ "step": 87
1228
+ },
1229
+ {
1230
+ "completion_length": 77.1796875,
1231
+ "epoch": 0.005647360821434301,
1232
+ "grad_norm": 2.0348391619602713,
1233
+ "kl": 0.046142578125,
1234
+ "learning_rate": 9.971762289821588e-07,
1235
+ "loss": 0.0018,
1236
+ "reward": 3.046875,
1237
+ "reward_std": 0.26907191798090935,
1238
+ "rewards/accuracy_reward": 0.609375,
1239
+ "rewards/format_count_numbers": 1.4375,
1240
+ "rewards/format_reward": 1.0,
1241
+ "step": 88
1242
+ },
1243
+ {
1244
+ "completion_length": 69.859375,
1245
+ "epoch": 0.005711535376223327,
1246
+ "grad_norm": 2.4510593826235993,
1247
+ "kl": 0.044677734375,
1248
+ "learning_rate": 9.97144140675138e-07,
1249
+ "loss": 0.0018,
1250
+ "reward": 3.40625,
1251
+ "reward_std": 0.3325708657503128,
1252
+ "rewards/accuracy_reward": 0.6953125,
1253
+ "rewards/format_count_numbers": 1.7109375,
1254
+ "rewards/format_reward": 1.0,
1255
+ "step": 89
1256
+ },
1257
+ {
1258
+ "completion_length": 69.421875,
1259
+ "epoch": 0.0057757099310123535,
1260
+ "grad_norm": 7.386556285996494,
1261
+ "kl": 0.0384521484375,
1262
+ "learning_rate": 9.97112052368117e-07,
1263
+ "loss": 0.0015,
1264
+ "reward": 3.45703125,
1265
+ "reward_std": 0.18665644526481628,
1266
+ "rewards/accuracy_reward": 0.609375,
1267
+ "rewards/format_count_numbers": 1.84765625,
1268
+ "rewards/format_reward": 1.0,
1269
+ "step": 90
1270
+ },
1271
+ {
1272
+ "completion_length": 76.546875,
1273
+ "epoch": 0.00583988448580138,
1274
+ "grad_norm": 10.07527340286235,
1275
+ "kl": 0.03741455078125,
1276
+ "learning_rate": 9.97079964061096e-07,
1277
+ "loss": 0.0015,
1278
+ "reward": 3.4765625,
1279
+ "reward_std": 0.17688900232315063,
1280
+ "rewards/accuracy_reward": 0.75,
1281
+ "rewards/format_count_numbers": 1.7265625,
1282
+ "rewards/format_reward": 1.0,
1283
+ "step": 91
1284
+ },
1285
+ {
1286
+ "completion_length": 67.1015625,
1287
+ "epoch": 0.005904059040590406,
1288
+ "grad_norm": 6.961725253066966,
1289
+ "kl": 0.0450439453125,
1290
+ "learning_rate": 9.970478757540752e-07,
1291
+ "loss": 0.0018,
1292
+ "reward": 3.15234375,
1293
+ "reward_std": 0.18702887743711472,
1294
+ "rewards/accuracy_reward": 0.8046875,
1295
+ "rewards/format_count_numbers": 1.34765625,
1296
+ "rewards/format_reward": 1.0,
1297
+ "step": 92
1298
+ },
1299
+ {
1300
+ "completion_length": 67.75,
1301
+ "epoch": 0.005968233595379432,
1302
+ "grad_norm": 4.665158893240586,
1303
+ "kl": 0.0504150390625,
1304
+ "learning_rate": 9.970157874470542e-07,
1305
+ "loss": 0.002,
1306
+ "reward": 3.32421875,
1307
+ "reward_std": 0.17975258082151413,
1308
+ "rewards/accuracy_reward": 0.71875,
1309
+ "rewards/format_count_numbers": 1.61328125,
1310
+ "rewards/format_reward": 0.9921875,
1311
+ "step": 93
1312
+ },
1313
+ {
1314
+ "completion_length": 62.765625,
1315
+ "epoch": 0.006032408150168458,
1316
+ "grad_norm": 6.052438787803174,
1317
+ "kl": 0.0577392578125,
1318
+ "learning_rate": 9.969836991400334e-07,
1319
+ "loss": 0.0023,
1320
+ "reward": 2.96484375,
1321
+ "reward_std": 0.17256294190883636,
1322
+ "rewards/accuracy_reward": 0.6171875,
1323
+ "rewards/format_count_numbers": 1.35546875,
1324
+ "rewards/format_reward": 0.9921875,
1325
+ "step": 94
1326
+ },
1327
+ {
1328
+ "completion_length": 67.546875,
1329
+ "epoch": 0.0060965827049574844,
1330
+ "grad_norm": 3.8543628664738248,
1331
+ "kl": 0.1171875,
1332
+ "learning_rate": 9.969516108330124e-07,
1333
+ "loss": 0.0047,
1334
+ "reward": 2.75,
1335
+ "reward_std": 0.25491149723529816,
1336
+ "rewards/accuracy_reward": 0.5390625,
1337
+ "rewards/format_count_numbers": 1.21875,
1338
+ "rewards/format_reward": 0.9921875,
1339
+ "step": 95
1340
+ },
1341
+ {
1342
+ "completion_length": 57.5234375,
1343
+ "epoch": 0.00616075725974651,
1344
+ "grad_norm": 10.068717750488322,
1345
+ "kl": 0.050048828125,
1346
+ "learning_rate": 9.969195225259914e-07,
1347
+ "loss": 0.002,
1348
+ "reward": 3.34765625,
1349
+ "reward_std": 0.15529648214578629,
1350
+ "rewards/accuracy_reward": 0.859375,
1351
+ "rewards/format_count_numbers": 1.49609375,
1352
+ "rewards/format_reward": 0.9921875,
1353
+ "step": 96
1354
+ },
1355
+ {
1356
+ "completion_length": 77.4140625,
1357
+ "epoch": 0.006224931814535537,
1358
+ "grad_norm": 76.26414395404969,
1359
+ "kl": 0.0400390625,
1360
+ "learning_rate": 9.968874342189706e-07,
1361
+ "loss": 0.0016,
1362
+ "reward": 3.3046875,
1363
+ "reward_std": 0.18849123269319534,
1364
+ "rewards/accuracy_reward": 0.6015625,
1365
+ "rewards/format_count_numbers": 1.7109375,
1366
+ "rewards/format_reward": 0.9921875,
1367
+ "step": 97
1368
+ },
1369
+ {
1370
+ "completion_length": 64.359375,
1371
+ "epoch": 0.006289106369324563,
1372
+ "grad_norm": 6.324698594548965,
1373
+ "kl": 0.05126953125,
1374
+ "learning_rate": 9.968553459119496e-07,
1375
+ "loss": 0.0021,
1376
+ "reward": 3.09765625,
1377
+ "reward_std": 0.16071559116244316,
1378
+ "rewards/accuracy_reward": 0.7578125,
1379
+ "rewards/format_count_numbers": 1.34765625,
1380
+ "rewards/format_reward": 0.9921875,
1381
+ "step": 98
1382
+ },
1383
+ {
1384
+ "completion_length": 69.578125,
1385
+ "epoch": 0.006353280924113589,
1386
+ "grad_norm": 2.6642177820540494,
1387
+ "kl": 0.05078125,
1388
+ "learning_rate": 9.968232576049286e-07,
1389
+ "loss": 0.002,
1390
+ "reward": 3.20703125,
1391
+ "reward_std": 0.19081907719373703,
1392
+ "rewards/accuracy_reward": 0.6328125,
1393
+ "rewards/format_count_numbers": 1.57421875,
1394
+ "rewards/format_reward": 1.0,
1395
+ "step": 99
1396
+ },
1397
+ {
1398
+ "completion_length": 69.6171875,
1399
+ "epoch": 0.006417455478902615,
1400
+ "grad_norm": 3.1800877639787006,
1401
+ "kl": 0.04925537109375,
1402
+ "learning_rate": 9.967911692979078e-07,
1403
+ "loss": 0.002,
1404
+ "reward": 3.15625,
1405
+ "reward_std": 0.25464994460344315,
1406
+ "rewards/accuracy_reward": 0.6875,
1407
+ "rewards/format_count_numbers": 1.46875,
1408
+ "rewards/format_reward": 1.0,
1409
+ "step": 100
1410
+ },
1411
+ {
1412
+ "completion_length": 69.296875,
1413
+ "epoch": 0.006481630033691641,
1414
+ "grad_norm": 5.47896444311625,
1415
+ "kl": 0.04052734375,
1416
+ "learning_rate": 9.967590809908868e-07,
1417
+ "loss": 0.0016,
1418
+ "reward": 3.16796875,
1419
+ "reward_std": 0.15877367183566093,
1420
+ "rewards/accuracy_reward": 0.6875,
1421
+ "rewards/format_count_numbers": 1.48046875,
1422
+ "rewards/format_reward": 1.0,
1423
+ "step": 101
1424
+ },
1425
+ {
1426
+ "completion_length": 66.703125,
1427
+ "epoch": 0.0065458045884806675,
1428
+ "grad_norm": 6.581183385830175,
1429
+ "kl": 0.0469970703125,
1430
+ "learning_rate": 9.96726992683866e-07,
1431
+ "loss": 0.0019,
1432
+ "reward": 3.359375,
1433
+ "reward_std": 0.2588741034269333,
1434
+ "rewards/accuracy_reward": 0.75,
1435
+ "rewards/format_count_numbers": 1.609375,
1436
+ "rewards/format_reward": 1.0,
1437
+ "step": 102
1438
+ },
1439
+ {
1440
+ "completion_length": 76.7109375,
1441
+ "epoch": 0.006609979143269693,
1442
+ "grad_norm": 5.79571682079651,
1443
+ "kl": 0.0438232421875,
1444
+ "learning_rate": 9.96694904376845e-07,
1445
+ "loss": 0.0018,
1446
+ "reward": 3.125,
1447
+ "reward_std": 0.23913496732711792,
1448
+ "rewards/accuracy_reward": 0.546875,
1449
+ "rewards/format_count_numbers": 1.5859375,
1450
+ "rewards/format_reward": 0.9921875,
1451
+ "step": 103
1452
+ },
1453
+ {
1454
+ "completion_length": 79.7578125,
1455
+ "epoch": 0.00667415369805872,
1456
+ "grad_norm": 3.1092072916938407,
1457
+ "kl": 0.0345458984375,
1458
+ "learning_rate": 9.966628160698242e-07,
1459
+ "loss": 0.0014,
1460
+ "reward": 3.2578125,
1461
+ "reward_std": 0.24152958393096924,
1462
+ "rewards/accuracy_reward": 0.671875,
1463
+ "rewards/format_count_numbers": 1.5859375,
1464
+ "rewards/format_reward": 1.0,
1465
+ "step": 104
1466
+ },
1467
+ {
1468
+ "completion_length": 71.3046875,
1469
+ "epoch": 0.006738328252847746,
1470
+ "grad_norm": 8.094574176465539,
1471
+ "kl": 0.037841796875,
1472
+ "learning_rate": 9.966307277628032e-07,
1473
+ "loss": 0.0015,
1474
+ "reward": 3.24609375,
1475
+ "reward_std": 0.37829458713531494,
1476
+ "rewards/accuracy_reward": 0.6484375,
1477
+ "rewards/format_count_numbers": 1.59765625,
1478
+ "rewards/format_reward": 1.0,
1479
+ "step": 105
1480
+ },
1481
+ {
1482
+ "completion_length": 80.2578125,
1483
+ "epoch": 0.006802502807636772,
1484
+ "grad_norm": 7.53058354344353,
1485
+ "kl": 0.03106689453125,
1486
+ "learning_rate": 9.965986394557822e-07,
1487
+ "loss": 0.0012,
1488
+ "reward": 3.19921875,
1489
+ "reward_std": 0.15539800375699997,
1490
+ "rewards/accuracy_reward": 0.6484375,
1491
+ "rewards/format_count_numbers": 1.56640625,
1492
+ "rewards/format_reward": 0.984375,
1493
+ "step": 106
1494
+ },
1495
+ {
1496
+ "completion_length": 75.828125,
1497
+ "epoch": 0.006866677362425798,
1498
+ "grad_norm": 10.101290133760061,
1499
+ "kl": 0.0355224609375,
1500
+ "learning_rate": 9.965665511487612e-07,
1501
+ "loss": 0.0014,
1502
+ "reward": 3.59765625,
1503
+ "reward_std": 0.2908743619918823,
1504
+ "rewards/accuracy_reward": 0.640625,
1505
+ "rewards/format_count_numbers": 1.95703125,
1506
+ "rewards/format_reward": 1.0,
1507
+ "step": 107
1508
+ },
1509
+ {
1510
+ "completion_length": 70.15625,
1511
+ "epoch": 0.006930851917214824,
1512
+ "grad_norm": 2.667528641039127,
1513
+ "kl": 0.02984619140625,
1514
+ "learning_rate": 9.965344628417405e-07,
1515
+ "loss": 0.0012,
1516
+ "reward": 3.109375,
1517
+ "reward_std": 0.21665052324533463,
1518
+ "rewards/accuracy_reward": 0.625,
1519
+ "rewards/format_count_numbers": 1.484375,
1520
+ "rewards/format_reward": 1.0,
1521
+ "step": 108
1522
+ },
1523
+ {
1524
+ "completion_length": 67.7265625,
1525
+ "epoch": 0.006995026472003851,
1526
+ "grad_norm": 1.7942554364390482,
1527
+ "kl": 0.03582763671875,
1528
+ "learning_rate": 9.965023745347195e-07,
1529
+ "loss": 0.0014,
1530
+ "reward": 3.16796875,
1531
+ "reward_std": 0.20552908629179,
1532
+ "rewards/accuracy_reward": 0.8125,
1533
+ "rewards/format_count_numbers": 1.35546875,
1534
+ "rewards/format_reward": 1.0,
1535
+ "step": 109
1536
+ },
1537
+ {
1538
+ "completion_length": 69.875,
1539
+ "epoch": 0.007059201026792876,
1540
+ "grad_norm": 3.9047862888632094,
1541
+ "kl": 0.035888671875,
1542
+ "learning_rate": 9.964702862276987e-07,
1543
+ "loss": 0.0014,
1544
+ "reward": 2.9296875,
1545
+ "reward_std": 0.21844128519296646,
1546
+ "rewards/accuracy_reward": 0.59375,
1547
+ "rewards/format_count_numbers": 1.3359375,
1548
+ "rewards/format_reward": 1.0,
1549
+ "step": 110
1550
+ },
1551
+ {
1552
+ "completion_length": 73.9296875,
1553
+ "epoch": 0.007123375581581903,
1554
+ "grad_norm": 1.9901205037970706,
1555
+ "kl": 0.0367431640625,
1556
+ "learning_rate": 9.964381979206777e-07,
1557
+ "loss": 0.0015,
1558
+ "reward": 3.80078125,
1559
+ "reward_std": 0.12836876511573792,
1560
+ "rewards/accuracy_reward": 0.8203125,
1561
+ "rewards/format_count_numbers": 1.98046875,
1562
+ "rewards/format_reward": 1.0,
1563
+ "step": 111
1564
+ },
1565
+ {
1566
+ "completion_length": 70.2265625,
1567
+ "epoch": 0.007187550136370929,
1568
+ "grad_norm": 2.6629757273994272,
1569
+ "kl": 0.029296875,
1570
+ "learning_rate": 9.964061096136569e-07,
1571
+ "loss": 0.0012,
1572
+ "reward": 2.9765625,
1573
+ "reward_std": 0.192819744348526,
1574
+ "rewards/accuracy_reward": 0.7421875,
1575
+ "rewards/format_count_numbers": 1.2421875,
1576
+ "rewards/format_reward": 0.9921875,
1577
+ "step": 112
1578
+ },
1579
+ {
1580
+ "completion_length": 89.484375,
1581
+ "epoch": 0.007251724691159955,
1582
+ "grad_norm": 2.966985281450592,
1583
+ "kl": 0.0301513671875,
1584
+ "learning_rate": 9.963740213066359e-07,
1585
+ "loss": 0.0012,
1586
+ "reward": 3.60546875,
1587
+ "reward_std": 0.2533341944217682,
1588
+ "rewards/accuracy_reward": 0.6640625,
1589
+ "rewards/format_count_numbers": 1.95703125,
1590
+ "rewards/format_reward": 0.984375,
1591
+ "step": 113
1592
+ },
1593
+ {
1594
+ "completion_length": 70.59375,
1595
+ "epoch": 0.0073158992459489815,
1596
+ "grad_norm": 2.7125397233136437,
1597
+ "kl": 0.02899169921875,
1598
+ "learning_rate": 9.963419329996149e-07,
1599
+ "loss": 0.0012,
1600
+ "reward": 3.4453125,
1601
+ "reward_std": 0.18551141023635864,
1602
+ "rewards/accuracy_reward": 0.8359375,
1603
+ "rewards/format_count_numbers": 1.609375,
1604
+ "rewards/format_reward": 1.0,
1605
+ "step": 114
1606
+ },
1607
+ {
1608
+ "completion_length": 70.8515625,
1609
+ "epoch": 0.007380073800738007,
1610
+ "grad_norm": 3.8788221946660197,
1611
+ "kl": 0.044189453125,
1612
+ "learning_rate": 9.963098446925939e-07,
1613
+ "loss": 0.0018,
1614
+ "reward": 3.2265625,
1615
+ "reward_std": 0.4408875107765198,
1616
+ "rewards/accuracy_reward": 0.5234375,
1617
+ "rewards/format_count_numbers": 1.7109375,
1618
+ "rewards/format_reward": 0.9921875,
1619
+ "step": 115
1620
+ },
1621
+ {
1622
+ "completion_length": 71.4375,
1623
+ "epoch": 0.007444248355527034,
1624
+ "grad_norm": 2.4238411680755836,
1625
+ "kl": 0.0294189453125,
1626
+ "learning_rate": 9.96277756385573e-07,
1627
+ "loss": 0.0012,
1628
+ "reward": 2.98046875,
1629
+ "reward_std": 0.3246304541826248,
1630
+ "rewards/accuracy_reward": 0.6328125,
1631
+ "rewards/format_count_numbers": 1.35546875,
1632
+ "rewards/format_reward": 0.9921875,
1633
+ "step": 116
1634
+ },
1635
+ {
1636
+ "completion_length": 75.3671875,
1637
+ "epoch": 0.007508422910316059,
1638
+ "grad_norm": 2.1672853496708027,
1639
+ "kl": 0.03167724609375,
1640
+ "learning_rate": 9.96245668078552e-07,
1641
+ "loss": 0.0013,
1642
+ "reward": 3.28515625,
1643
+ "reward_std": 0.16477391123771667,
1644
+ "rewards/accuracy_reward": 0.6796875,
1645
+ "rewards/format_count_numbers": 1.61328125,
1646
+ "rewards/format_reward": 0.9921875,
1647
+ "step": 117
1648
+ },
1649
+ {
1650
+ "completion_length": 72.8125,
1651
+ "epoch": 0.007572597465105086,
1652
+ "grad_norm": 4.153439569042706,
1653
+ "kl": 0.0335693359375,
1654
+ "learning_rate": 9.962135797715313e-07,
1655
+ "loss": 0.0013,
1656
+ "reward": 3.45703125,
1657
+ "reward_std": 0.1774558126926422,
1658
+ "rewards/accuracy_reward": 0.7265625,
1659
+ "rewards/format_count_numbers": 1.73046875,
1660
+ "rewards/format_reward": 1.0,
1661
+ "step": 118
1662
+ },
1663
+ {
1664
+ "completion_length": 71.96875,
1665
+ "epoch": 0.007636772019894112,
1666
+ "grad_norm": 4.332907387044588,
1667
+ "kl": 0.0391845703125,
1668
+ "learning_rate": 9.961814914645103e-07,
1669
+ "loss": 0.0016,
1670
+ "reward": 2.921875,
1671
+ "reward_std": 0.26686903089284897,
1672
+ "rewards/accuracy_reward": 0.7109375,
1673
+ "rewards/format_count_numbers": 1.2109375,
1674
+ "rewards/format_reward": 1.0,
1675
+ "step": 119
1676
+ },
1677
+ {
1678
+ "completion_length": 80.3671875,
1679
+ "epoch": 0.007700946574683138,
1680
+ "grad_norm": 8.242677153517718,
1681
+ "kl": 0.0345458984375,
1682
+ "learning_rate": 9.961494031574895e-07,
1683
+ "loss": 0.0014,
1684
+ "reward": 3.37890625,
1685
+ "reward_std": 0.2326306775212288,
1686
+ "rewards/accuracy_reward": 0.6640625,
1687
+ "rewards/format_count_numbers": 1.72265625,
1688
+ "rewards/format_reward": 0.9921875,
1689
+ "step": 120
1690
+ },
1691
+ {
1692
+ "completion_length": 77.03125,
1693
+ "epoch": 0.007765121129472165,
1694
+ "grad_norm": 5.62963310635079,
1695
+ "kl": 0.0301513671875,
1696
+ "learning_rate": 9.961173148504685e-07,
1697
+ "loss": 0.0012,
1698
+ "reward": 3.38671875,
1699
+ "reward_std": 0.25540195405483246,
1700
+ "rewards/accuracy_reward": 0.640625,
1701
+ "rewards/format_count_numbers": 1.74609375,
1702
+ "rewards/format_reward": 1.0,
1703
+ "step": 121
1704
+ },
1705
+ {
1706
+ "completion_length": 72.515625,
1707
+ "epoch": 0.007829295684261191,
1708
+ "grad_norm": 5.019156549606577,
1709
+ "kl": 0.0352783203125,
1710
+ "learning_rate": 9.960852265434475e-07,
1711
+ "loss": 0.0014,
1712
+ "reward": 3.07421875,
1713
+ "reward_std": 0.17285499721765518,
1714
+ "rewards/accuracy_reward": 0.734375,
1715
+ "rewards/format_count_numbers": 1.33984375,
1716
+ "rewards/format_reward": 1.0,
1717
+ "step": 122
1718
+ },
1719
+ {
1720
+ "completion_length": 72.046875,
1721
+ "epoch": 0.007893470239050217,
1722
+ "grad_norm": 172.86521654796587,
1723
+ "kl": 0.03363037109375,
1724
+ "learning_rate": 9.960531382364265e-07,
1725
+ "loss": 0.0013,
1726
+ "reward": 3.49609375,
1727
+ "reward_std": 0.18784459680318832,
1728
+ "rewards/accuracy_reward": 0.7578125,
1729
+ "rewards/format_count_numbers": 1.74609375,
1730
+ "rewards/format_reward": 0.9921875,
1731
+ "step": 123
1732
+ },
1733
+ {
1734
+ "completion_length": 81.546875,
1735
+ "epoch": 0.007957644793839242,
1736
+ "grad_norm": 2.980011330259798,
1737
+ "kl": 0.0408935546875,
1738
+ "learning_rate": 9.960210499294057e-07,
1739
+ "loss": 0.0016,
1740
+ "reward": 3.41015625,
1741
+ "reward_std": 0.26077425479888916,
1742
+ "rewards/accuracy_reward": 0.6875,
1743
+ "rewards/format_count_numbers": 1.72265625,
1744
+ "rewards/format_reward": 1.0,
1745
+ "step": 124
1746
+ },
1747
+ {
1748
+ "completion_length": 76.75,
1749
+ "epoch": 0.008021819348628268,
1750
+ "grad_norm": 11.648469118233269,
1751
+ "kl": 0.03179931640625,
1752
+ "learning_rate": 9.959889616223847e-07,
1753
+ "loss": 0.0013,
1754
+ "reward": 3.47265625,
1755
+ "reward_std": 0.2088487520813942,
1756
+ "rewards/accuracy_reward": 0.6015625,
1757
+ "rewards/format_count_numbers": 1.87109375,
1758
+ "rewards/format_reward": 1.0,
1759
+ "step": 125
1760
+ },
1761
+ {
1762
+ "completion_length": 73.171875,
1763
+ "epoch": 0.008085993903417295,
1764
+ "grad_norm": 8.91710759838637,
1765
+ "kl": 0.03350830078125,
1766
+ "learning_rate": 9.959568733153637e-07,
1767
+ "loss": 0.0013,
1768
+ "reward": 3.13671875,
1769
+ "reward_std": 0.2274910733103752,
1770
+ "rewards/accuracy_reward": 0.78125,
1771
+ "rewards/format_count_numbers": 1.35546875,
1772
+ "rewards/format_reward": 1.0,
1773
+ "step": 126
1774
+ },
1775
+ {
1776
+ "completion_length": 85.359375,
1777
+ "epoch": 0.008150168458206321,
1778
+ "grad_norm": 1.741816818144556,
1779
+ "kl": 0.0216064453125,
1780
+ "learning_rate": 9.95924785008343e-07,
1781
+ "loss": 0.0009,
1782
+ "reward": 2.6328125,
1783
+ "reward_std": 0.1547919102013111,
1784
+ "rewards/accuracy_reward": 0.6484375,
1785
+ "rewards/format_count_numbers": 0.984375,
1786
+ "rewards/format_reward": 1.0,
1787
+ "step": 127
1788
+ },
1789
+ {
1790
+ "completion_length": 74.5625,
1791
+ "epoch": 0.008214343012995347,
1792
+ "grad_norm": 2.6793007127892614,
1793
+ "kl": 0.0460205078125,
1794
+ "learning_rate": 9.95892696701322e-07,
1795
+ "loss": 0.0018,
1796
+ "reward": 3.48046875,
1797
+ "reward_std": 0.188736230134964,
1798
+ "rewards/accuracy_reward": 0.75,
1799
+ "rewards/format_count_numbers": 1.73828125,
1800
+ "rewards/format_reward": 0.9921875,
1801
+ "step": 128
1802
+ },
1803
+ {
1804
+ "completion_length": 80.5390625,
1805
+ "epoch": 0.008278517567784374,
1806
+ "grad_norm": 8.14669625843878,
1807
+ "kl": 0.03326416015625,
1808
+ "learning_rate": 9.958606083943011e-07,
1809
+ "loss": 0.0013,
1810
+ "reward": 3.59765625,
1811
+ "reward_std": 0.23143374174833298,
1812
+ "rewards/accuracy_reward": 0.7421875,
1813
+ "rewards/format_count_numbers": 1.86328125,
1814
+ "rewards/format_reward": 0.9921875,
1815
+ "step": 129
1816
+ },
1817
+ {
1818
+ "completion_length": 82.234375,
1819
+ "epoch": 0.0083426921225734,
1820
+ "grad_norm": 2.7245691995074965,
1821
+ "kl": 0.02880859375,
1822
+ "learning_rate": 9.958285200872801e-07,
1823
+ "loss": 0.0012,
1824
+ "reward": 3.0703125,
1825
+ "reward_std": 0.28687404096126556,
1826
+ "rewards/accuracy_reward": 0.5078125,
1827
+ "rewards/format_count_numbers": 1.5703125,
1828
+ "rewards/format_reward": 0.9921875,
1829
+ "step": 130
1830
+ },
1831
+ {
1832
+ "completion_length": 73.1328125,
1833
+ "epoch": 0.008406866677362426,
1834
+ "grad_norm": 5.3208068953625345,
1835
+ "kl": 0.03204345703125,
1836
+ "learning_rate": 9.957964317802592e-07,
1837
+ "loss": 0.0013,
1838
+ "reward": 3.03125,
1839
+ "reward_std": 0.19568345695734024,
1840
+ "rewards/accuracy_reward": 0.78125,
1841
+ "rewards/format_count_numbers": 1.25,
1842
+ "rewards/format_reward": 1.0,
1843
+ "step": 131
1844
+ },
1845
+ {
1846
+ "completion_length": 73.2734375,
1847
+ "epoch": 0.008471041232151451,
1848
+ "grad_norm": 2.684705369760692,
1849
+ "kl": 0.03472900390625,
1850
+ "learning_rate": 9.957643434732384e-07,
1851
+ "loss": 0.0014,
1852
+ "reward": 3.34375,
1853
+ "reward_std": 0.1942191794514656,
1854
+ "rewards/accuracy_reward": 0.78125,
1855
+ "rewards/format_count_numbers": 1.5625,
1856
+ "rewards/format_reward": 1.0,
1857
+ "step": 132
1858
+ },
1859
+ {
1860
+ "completion_length": 79.359375,
1861
+ "epoch": 0.008535215786940479,
1862
+ "grad_norm": 4.770259276932602,
1863
+ "kl": 0.03912353515625,
1864
+ "learning_rate": 9.957322551662174e-07,
1865
+ "loss": 0.0016,
1866
+ "reward": 3.38671875,
1867
+ "reward_std": 0.28095004707574844,
1868
+ "rewards/accuracy_reward": 0.671875,
1869
+ "rewards/format_count_numbers": 1.72265625,
1870
+ "rewards/format_reward": 0.9921875,
1871
+ "step": 133
1872
+ },
1873
+ {
1874
+ "completion_length": 77.875,
1875
+ "epoch": 0.008599390341729504,
1876
+ "grad_norm": 2.007034772347311,
1877
+ "kl": 0.0369873046875,
1878
+ "learning_rate": 9.957001668591964e-07,
1879
+ "loss": 0.0015,
1880
+ "reward": 3.41796875,
1881
+ "reward_std": 0.15443194285035133,
1882
+ "rewards/accuracy_reward": 0.8046875,
1883
+ "rewards/format_count_numbers": 1.61328125,
1884
+ "rewards/format_reward": 1.0,
1885
+ "step": 134
1886
+ },
1887
+ {
1888
+ "completion_length": 76.3671875,
1889
+ "epoch": 0.00866356489651853,
1890
+ "grad_norm": 5.867057502447185,
1891
+ "kl": 0.03289794921875,
1892
+ "learning_rate": 9.956680785521756e-07,
1893
+ "loss": 0.0013,
1894
+ "reward": 3.31640625,
1895
+ "reward_std": 0.260734885931015,
1896
+ "rewards/accuracy_reward": 0.578125,
1897
+ "rewards/format_count_numbers": 1.73828125,
1898
+ "rewards/format_reward": 1.0,
1899
+ "step": 135
1900
+ },
1901
+ {
1902
+ "completion_length": 91.40625,
1903
+ "epoch": 0.008727739451307557,
1904
+ "grad_norm": 3.3264591723301042,
1905
+ "kl": 0.037841796875,
1906
+ "learning_rate": 9.956359902451546e-07,
1907
+ "loss": 0.0015,
1908
+ "reward": 3.01171875,
1909
+ "reward_std": 0.2456851825118065,
1910
+ "rewards/accuracy_reward": 0.421875,
1911
+ "rewards/format_count_numbers": 1.58984375,
1912
+ "rewards/format_reward": 1.0,
1913
+ "step": 136
1914
+ },
1915
+ {
1916
+ "completion_length": 73.9609375,
1917
+ "epoch": 0.008791914006096583,
1918
+ "grad_norm": 1.8525091716102906,
1919
+ "kl": 0.02886962890625,
1920
+ "learning_rate": 9.956039019381338e-07,
1921
+ "loss": 0.0012,
1922
+ "reward": 3.16796875,
1923
+ "reward_std": 0.054446361027657986,
1924
+ "rewards/accuracy_reward": 0.8046875,
1925
+ "rewards/format_count_numbers": 1.36328125,
1926
+ "rewards/format_reward": 1.0,
1927
+ "step": 137
1928
+ },
1929
+ {
1930
+ "completion_length": 82.421875,
1931
+ "epoch": 0.008856088560885609,
1932
+ "grad_norm": 3.221242319181372,
1933
+ "kl": 0.0504150390625,
1934
+ "learning_rate": 9.955718136311128e-07,
1935
+ "loss": 0.002,
1936
+ "reward": 3.38671875,
1937
+ "reward_std": 0.24750632792711258,
1938
+ "rewards/accuracy_reward": 0.671875,
1939
+ "rewards/format_count_numbers": 1.72265625,
1940
+ "rewards/format_reward": 0.9921875,
1941
+ "step": 138
1942
+ },
1943
+ {
1944
+ "completion_length": 78.4296875,
1945
+ "epoch": 0.008920263115674634,
1946
+ "grad_norm": 2.908425383296693,
1947
+ "kl": 0.02789306640625,
1948
+ "learning_rate": 9.955397253240918e-07,
1949
+ "loss": 0.0011,
1950
+ "reward": 3.140625,
1951
+ "reward_std": 0.22043407708406448,
1952
+ "rewards/accuracy_reward": 0.6484375,
1953
+ "rewards/format_count_numbers": 1.5,
1954
+ "rewards/format_reward": 0.9921875,
1955
+ "step": 139
1956
+ },
1957
+ {
1958
+ "completion_length": 76.2734375,
1959
+ "epoch": 0.008984437670463662,
1960
+ "grad_norm": 69.81281381804405,
1961
+ "kl": 0.037353515625,
1962
+ "learning_rate": 9.95507637017071e-07,
1963
+ "loss": 0.0015,
1964
+ "reward": 3.2265625,
1965
+ "reward_std": 0.25224410742521286,
1966
+ "rewards/accuracy_reward": 0.6328125,
1967
+ "rewards/format_count_numbers": 1.6015625,
1968
+ "rewards/format_reward": 0.9921875,
1969
+ "step": 140
1970
+ },
1971
+ {
1972
+ "completion_length": 84.6953125,
1973
+ "epoch": 0.009048612225252687,
1974
+ "grad_norm": 5.582225121353137,
1975
+ "kl": 0.0328369140625,
1976
+ "learning_rate": 9.9547554871005e-07,
1977
+ "loss": 0.0013,
1978
+ "reward": 3.0546875,
1979
+ "reward_std": 0.24409383535385132,
1980
+ "rewards/accuracy_reward": 0.578125,
1981
+ "rewards/format_count_numbers": 1.4765625,
1982
+ "rewards/format_reward": 1.0,
1983
+ "step": 141
1984
+ },
1985
+ {
1986
+ "completion_length": 86.4921875,
1987
+ "epoch": 0.009112786780041713,
1988
+ "grad_norm": 6.841154880421374,
1989
+ "kl": 0.1744384765625,
1990
+ "learning_rate": 9.95443460403029e-07,
1991
+ "loss": 0.007,
1992
+ "reward": 3.17578125,
1993
+ "reward_std": 0.16243606060743332,
1994
+ "rewards/accuracy_reward": 0.6875,
1995
+ "rewards/format_count_numbers": 1.48828125,
1996
+ "rewards/format_reward": 1.0,
1997
+ "step": 142
1998
+ },
1999
+ {
2000
+ "completion_length": 84.5703125,
2001
+ "epoch": 0.00917696133483074,
2002
+ "grad_norm": 3.638970858152364,
2003
+ "kl": 0.0343017578125,
2004
+ "learning_rate": 9.954113720960082e-07,
2005
+ "loss": 0.0014,
2006
+ "reward": 3.23828125,
2007
+ "reward_std": 0.27304429560899734,
2008
+ "rewards/accuracy_reward": 0.515625,
2009
+ "rewards/format_count_numbers": 1.72265625,
2010
+ "rewards/format_reward": 1.0,
2011
+ "step": 143
2012
+ },
2013
+ {
2014
+ "completion_length": 83.40625,
2015
+ "epoch": 0.009241135889619766,
2016
+ "grad_norm": 4.522345160206695,
2017
+ "kl": 0.0487060546875,
2018
+ "learning_rate": 9.953792837889872e-07,
2019
+ "loss": 0.0019,
2020
+ "reward": 3.37109375,
2021
+ "reward_std": 0.2966039180755615,
2022
+ "rewards/accuracy_reward": 0.640625,
2023
+ "rewards/format_count_numbers": 1.73046875,
2024
+ "rewards/format_reward": 1.0,
2025
+ "step": 144
2026
+ },
2027
+ {
2028
+ "completion_length": 83.421875,
2029
+ "epoch": 0.009305310444408792,
2030
+ "grad_norm": 7.380300919018527,
2031
+ "kl": 0.02728271484375,
2032
+ "learning_rate": 9.953471954819664e-07,
2033
+ "loss": 0.0011,
2034
+ "reward": 3.1875,
2035
+ "reward_std": 0.21595831215381622,
2036
+ "rewards/accuracy_reward": 0.5625,
2037
+ "rewards/format_count_numbers": 1.625,
2038
+ "rewards/format_reward": 1.0,
2039
+ "step": 145
2040
+ },
2041
+ {
2042
+ "completion_length": 87.9140625,
2043
+ "epoch": 0.009369484999197817,
2044
+ "grad_norm": 5.3843936760731435,
2045
+ "kl": 0.0396728515625,
2046
+ "learning_rate": 9.953151071749454e-07,
2047
+ "loss": 0.0016,
2048
+ "reward": 3.48828125,
2049
+ "reward_std": 0.29947739839553833,
2050
+ "rewards/accuracy_reward": 0.6640625,
2051
+ "rewards/format_count_numbers": 1.82421875,
2052
+ "rewards/format_reward": 1.0,
2053
+ "step": 146
2054
+ },
2055
+ {
2056
+ "completion_length": 84.15625,
2057
+ "epoch": 0.009433659553986845,
2058
+ "grad_norm": 2.10354290562444,
2059
+ "kl": 0.035400390625,
2060
+ "learning_rate": 9.952830188679244e-07,
2061
+ "loss": 0.0014,
2062
+ "reward": 3.2421875,
2063
+ "reward_std": 0.13888052850961685,
2064
+ "rewards/accuracy_reward": 0.625,
2065
+ "rewards/format_count_numbers": 1.6171875,
2066
+ "rewards/format_reward": 1.0,
2067
+ "step": 147
2068
+ },
2069
+ {
2070
+ "completion_length": 85.2265625,
2071
+ "epoch": 0.00949783410877587,
2072
+ "grad_norm": 26.198299549627695,
2073
+ "kl": 0.0377197265625,
2074
+ "learning_rate": 9.952509305609036e-07,
2075
+ "loss": 0.0015,
2076
+ "reward": 3.19921875,
2077
+ "reward_std": 0.3435995280742645,
2078
+ "rewards/accuracy_reward": 0.484375,
2079
+ "rewards/format_count_numbers": 1.71484375,
2080
+ "rewards/format_reward": 1.0,
2081
+ "step": 148
2082
+ },
2083
+ {
2084
+ "completion_length": 77.6875,
2085
+ "epoch": 0.009562008663564896,
2086
+ "grad_norm": 2.2014767998798597,
2087
+ "kl": 0.04052734375,
2088
+ "learning_rate": 9.952188422538826e-07,
2089
+ "loss": 0.0016,
2090
+ "reward": 3.109375,
2091
+ "reward_std": 0.18990949541330338,
2092
+ "rewards/accuracy_reward": 0.609375,
2093
+ "rewards/format_count_numbers": 1.5,
2094
+ "rewards/format_reward": 1.0,
2095
+ "step": 149
2096
+ },
2097
+ {
2098
+ "completion_length": 86.5234375,
2099
+ "epoch": 0.009626183218353923,
2100
+ "grad_norm": 3.7167303088615733,
2101
+ "kl": 0.02752685546875,
2102
+ "learning_rate": 9.951867539468616e-07,
2103
+ "loss": 0.0011,
2104
+ "reward": 3.0703125,
2105
+ "reward_std": 0.3137922137975693,
2106
+ "rewards/accuracy_reward": 0.6015625,
2107
+ "rewards/format_count_numbers": 1.4765625,
2108
+ "rewards/format_reward": 0.9921875,
2109
+ "step": 150
2110
+ },
2111
+ {
2112
+ "completion_length": 85.1640625,
2113
+ "epoch": 0.009690357773142949,
2114
+ "grad_norm": 4.175840708663256,
2115
+ "kl": 0.0296630859375,
2116
+ "learning_rate": 9.951546656398408e-07,
2117
+ "loss": 0.0012,
2118
+ "reward": 3.41015625,
2119
+ "reward_std": 0.18387350719422102,
2120
+ "rewards/accuracy_reward": 0.6875,
2121
+ "rewards/format_count_numbers": 1.73046875,
2122
+ "rewards/format_reward": 0.9921875,
2123
+ "step": 151
2124
+ },
2125
+ {
2126
+ "completion_length": 78.6015625,
2127
+ "epoch": 0.009754532327931975,
2128
+ "grad_norm": 1.9822559184582953,
2129
+ "kl": 0.0369873046875,
2130
+ "learning_rate": 9.951225773328198e-07,
2131
+ "loss": 0.0015,
2132
+ "reward": 3.30078125,
2133
+ "reward_std": 0.22633200883865356,
2134
+ "rewards/accuracy_reward": 0.5703125,
2135
+ "rewards/format_count_numbers": 1.73046875,
2136
+ "rewards/format_reward": 1.0,
2137
+ "step": 152
2138
+ },
2139
+ {
2140
+ "completion_length": 100.1953125,
2141
+ "epoch": 0.009818706882721,
2142
+ "grad_norm": 6.95505305805243,
2143
+ "kl": 0.0323486328125,
2144
+ "learning_rate": 9.950904890257988e-07,
2145
+ "loss": 0.0013,
2146
+ "reward": 3.3828125,
2147
+ "reward_std": 0.27803826332092285,
2148
+ "rewards/accuracy_reward": 0.5703125,
2149
+ "rewards/format_count_numbers": 1.8359375,
2150
+ "rewards/format_reward": 0.9765625,
2151
+ "step": 153
2152
+ },
2153
+ {
2154
+ "completion_length": 96.5703125,
2155
+ "epoch": 0.009882881437510028,
2156
+ "grad_norm": 3.906970922010899,
2157
+ "kl": 0.04315185546875,
2158
+ "learning_rate": 9.95058400718778e-07,
2159
+ "loss": 0.0017,
2160
+ "reward": 3.19140625,
2161
+ "reward_std": 0.4169163405895233,
2162
+ "rewards/accuracy_reward": 0.640625,
2163
+ "rewards/format_count_numbers": 1.58984375,
2164
+ "rewards/format_reward": 0.9609375,
2165
+ "step": 154
2166
+ },
2167
+ {
2168
+ "completion_length": 80.3359375,
2169
+ "epoch": 0.009947055992299053,
2170
+ "grad_norm": 3.628791735089063,
2171
+ "kl": 0.02752685546875,
2172
+ "learning_rate": 9.95026312411757e-07,
2173
+ "loss": 0.0011,
2174
+ "reward": 2.9140625,
2175
+ "reward_std": 0.29985813796520233,
2176
+ "rewards/accuracy_reward": 0.671875,
2177
+ "rewards/format_count_numbers": 1.25,
2178
+ "rewards/format_reward": 0.9921875,
2179
+ "step": 155
2180
+ },
2181
+ {
2182
+ "completion_length": 89.8046875,
2183
+ "epoch": 0.01001123054708808,
2184
+ "grad_norm": 2.993371763950907,
2185
+ "kl": 0.02532958984375,
2186
+ "learning_rate": 9.949942241047363e-07,
2187
+ "loss": 0.001,
2188
+ "reward": 3.5703125,
2189
+ "reward_std": 0.34663237631320953,
2190
+ "rewards/accuracy_reward": 0.625,
2191
+ "rewards/format_count_numbers": 1.9609375,
2192
+ "rewards/format_reward": 0.984375,
2193
+ "step": 156
2194
+ },
2195
+ {
2196
+ "completion_length": 82.5,
2197
+ "epoch": 0.010075405101877107,
2198
+ "grad_norm": 3.4536790618347486,
2199
+ "kl": 0.03021240234375,
2200
+ "learning_rate": 9.949621357977153e-07,
2201
+ "loss": 0.0012,
2202
+ "reward": 3.48828125,
2203
+ "reward_std": 0.2875918447971344,
2204
+ "rewards/accuracy_reward": 0.75,
2205
+ "rewards/format_count_numbers": 1.74609375,
2206
+ "rewards/format_reward": 0.9921875,
2207
+ "step": 157
2208
+ },
2209
+ {
2210
+ "completion_length": 84.484375,
2211
+ "epoch": 0.010139579656666132,
2212
+ "grad_norm": 9.831040603261537,
2213
+ "kl": 0.220703125,
2214
+ "learning_rate": 9.949300474906943e-07,
2215
+ "loss": 0.0088,
2216
+ "reward": 3.58203125,
2217
+ "reward_std": 0.11652141809463501,
2218
+ "rewards/accuracy_reward": 0.7109375,
2219
+ "rewards/format_count_numbers": 1.87109375,
2220
+ "rewards/format_reward": 1.0,
2221
+ "step": 158
2222
+ },
2223
+ {
2224
+ "completion_length": 85.0859375,
2225
+ "epoch": 0.010203754211455158,
2226
+ "grad_norm": 38.92993687592298,
2227
+ "kl": 0.0340576171875,
2228
+ "learning_rate": 9.948979591836735e-07,
2229
+ "loss": 0.0014,
2230
+ "reward": 3.5625,
2231
+ "reward_std": 0.15991678088903427,
2232
+ "rewards/accuracy_reward": 0.8203125,
2233
+ "rewards/format_count_numbers": 1.7421875,
2234
+ "rewards/format_reward": 1.0,
2235
+ "step": 159
2236
+ },
2237
+ {
2238
+ "completion_length": 79.046875,
2239
+ "epoch": 0.010267928766244184,
2240
+ "grad_norm": 4.0346708620650835,
2241
+ "kl": 0.02191162109375,
2242
+ "learning_rate": 9.948658708766525e-07,
2243
+ "loss": 0.0009,
2244
+ "reward": 2.9921875,
2245
+ "reward_std": 0.2673698216676712,
2246
+ "rewards/accuracy_reward": 0.78125,
2247
+ "rewards/format_count_numbers": 1.2265625,
2248
+ "rewards/format_reward": 0.984375,
2249
+ "step": 160
2250
+ },
2251
+ {
2252
+ "completion_length": 93.453125,
2253
+ "epoch": 0.010332103321033211,
2254
+ "grad_norm": 1.8562842308505547,
2255
+ "kl": 0.037353515625,
2256
+ "learning_rate": 9.948337825696315e-07,
2257
+ "loss": 0.0015,
2258
+ "reward": 3.1875,
2259
+ "reward_std": 0.19912117719650269,
2260
+ "rewards/accuracy_reward": 0.6015625,
2261
+ "rewards/format_count_numbers": 1.5859375,
2262
+ "rewards/format_reward": 1.0,
2263
+ "step": 161
2264
+ },
2265
+ {
2266
+ "completion_length": 83.734375,
2267
+ "epoch": 0.010396277875822237,
2268
+ "grad_norm": 6.323565148375347,
2269
+ "kl": 0.02825927734375,
2270
+ "learning_rate": 9.948016942626107e-07,
2271
+ "loss": 0.0011,
2272
+ "reward": 3.34375,
2273
+ "reward_std": 0.21071936190128326,
2274
+ "rewards/accuracy_reward": 0.7421875,
2275
+ "rewards/format_count_numbers": 1.6171875,
2276
+ "rewards/format_reward": 0.984375,
2277
+ "step": 162
2278
+ },
2279
+ {
2280
+ "completion_length": 81.3046875,
2281
+ "epoch": 0.010460452430611262,
2282
+ "grad_norm": 4.139572905745001,
2283
+ "kl": 0.029052734375,
2284
+ "learning_rate": 9.947696059555897e-07,
2285
+ "loss": 0.0012,
2286
+ "reward": 3.04296875,
2287
+ "reward_std": 0.29703205823898315,
2288
+ "rewards/accuracy_reward": 0.5625,
2289
+ "rewards/format_count_numbers": 1.48046875,
2290
+ "rewards/format_reward": 1.0,
2291
+ "step": 163
2292
+ },
2293
+ {
2294
+ "completion_length": 76.125,
2295
+ "epoch": 0.01052462698540029,
2296
+ "grad_norm": 2.7648686464439822,
2297
+ "kl": 0.0252685546875,
2298
+ "learning_rate": 9.94737517648569e-07,
2299
+ "loss": 0.001,
2300
+ "reward": 3.390625,
2301
+ "reward_std": 0.17688900232315063,
2302
+ "rewards/accuracy_reward": 0.78125,
2303
+ "rewards/format_count_numbers": 1.609375,
2304
+ "rewards/format_reward": 1.0,
2305
+ "step": 164
2306
+ },
2307
+ {
2308
+ "completion_length": 80.359375,
2309
+ "epoch": 0.010588801540189315,
2310
+ "grad_norm": 8.517375820803469,
2311
+ "kl": 0.03009033203125,
2312
+ "learning_rate": 9.94705429341548e-07,
2313
+ "loss": 0.0012,
2314
+ "reward": 3.12109375,
2315
+ "reward_std": 0.33453139662742615,
2316
+ "rewards/accuracy_reward": 0.671875,
2317
+ "rewards/format_count_numbers": 1.46484375,
2318
+ "rewards/format_reward": 0.984375,
2319
+ "step": 165
2320
+ },
2321
+ {
2322
+ "completion_length": 74.140625,
2323
+ "epoch": 0.010652976094978341,
2324
+ "grad_norm": 13.798127005048082,
2325
+ "kl": 0.03436279296875,
2326
+ "learning_rate": 9.94673341034527e-07,
2327
+ "loss": 0.0014,
2328
+ "reward": 3.32421875,
2329
+ "reward_std": 0.1938636675477028,
2330
+ "rewards/accuracy_reward": 0.8515625,
2331
+ "rewards/format_count_numbers": 1.47265625,
2332
+ "rewards/format_reward": 1.0,
2333
+ "step": 166
2334
+ },
2335
+ {
2336
+ "completion_length": 89.6875,
2337
+ "epoch": 0.010717150649767367,
2338
+ "grad_norm": 1.4991333191981464,
2339
+ "kl": 0.031005859375,
2340
+ "learning_rate": 9.946412527275061e-07,
2341
+ "loss": 0.0012,
2342
+ "reward": 3.08984375,
2343
+ "reward_std": 0.256519578397274,
2344
+ "rewards/accuracy_reward": 0.53125,
2345
+ "rewards/format_count_numbers": 1.56640625,
2346
+ "rewards/format_reward": 0.9921875,
2347
+ "step": 167
2348
+ },
2349
+ {
2350
+ "completion_length": 75.0703125,
2351
+ "epoch": 0.010781325204556394,
2352
+ "grad_norm": 3.45279085370487,
2353
+ "kl": 0.0384521484375,
2354
+ "learning_rate": 9.946091644204851e-07,
2355
+ "loss": 0.0015,
2356
+ "reward": 3.671875,
2357
+ "reward_std": 0.25596361607313156,
2358
+ "rewards/accuracy_reward": 0.8046875,
2359
+ "rewards/format_count_numbers": 1.8671875,
2360
+ "rewards/format_reward": 1.0,
2361
+ "step": 168
2362
+ },
2363
+ {
2364
+ "completion_length": 83.171875,
2365
+ "epoch": 0.01084549975934542,
2366
+ "grad_norm": 3.2484122379759017,
2367
+ "kl": 0.03173828125,
2368
+ "learning_rate": 9.945770761134641e-07,
2369
+ "loss": 0.0013,
2370
+ "reward": 3.234375,
2371
+ "reward_std": 0.20317253470420837,
2372
+ "rewards/accuracy_reward": 0.78125,
2373
+ "rewards/format_count_numbers": 1.453125,
2374
+ "rewards/format_reward": 1.0,
2375
+ "step": 169
2376
+ },
2377
+ {
2378
+ "completion_length": 82.7734375,
2379
+ "epoch": 0.010909674314134445,
2380
+ "grad_norm": 6.212774921649588,
2381
+ "kl": 0.0299072265625,
2382
+ "learning_rate": 9.945449878064433e-07,
2383
+ "loss": 0.0012,
2384
+ "reward": 3.49609375,
2385
+ "reward_std": 0.12981030344963074,
2386
+ "rewards/accuracy_reward": 0.765625,
2387
+ "rewards/format_count_numbers": 1.73046875,
2388
+ "rewards/format_reward": 1.0,
2389
+ "step": 170
2390
+ },
2391
+ {
2392
+ "completion_length": 73.2578125,
2393
+ "epoch": 0.010973848868923473,
2394
+ "grad_norm": 2.7189307025534237,
2395
+ "kl": 0.03564453125,
2396
+ "learning_rate": 9.945128994994223e-07,
2397
+ "loss": 0.0014,
2398
+ "reward": 3.0546875,
2399
+ "reward_std": 0.10720711201429367,
2400
+ "rewards/accuracy_reward": 0.8203125,
2401
+ "rewards/format_count_numbers": 1.234375,
2402
+ "rewards/format_reward": 1.0,
2403
+ "step": 171
2404
+ },
2405
+ {
2406
+ "completion_length": 76.7578125,
2407
+ "epoch": 0.011038023423712498,
2408
+ "grad_norm": 2.9999929786732147,
2409
+ "kl": 0.03466796875,
2410
+ "learning_rate": 9.944808111924015e-07,
2411
+ "loss": 0.0014,
2412
+ "reward": 3.20703125,
2413
+ "reward_std": 0.2519870027899742,
2414
+ "rewards/accuracy_reward": 0.7109375,
2415
+ "rewards/format_count_numbers": 1.49609375,
2416
+ "rewards/format_reward": 1.0,
2417
+ "step": 172
2418
+ },
2419
+ {
2420
+ "completion_length": 76.9375,
2421
+ "epoch": 0.011102197978501524,
2422
+ "grad_norm": 2.873932479263256,
2423
+ "kl": 0.037109375,
2424
+ "learning_rate": 9.944487228853805e-07,
2425
+ "loss": 0.0015,
2426
+ "reward": 3.3046875,
2427
+ "reward_std": 0.2227931022644043,
2428
+ "rewards/accuracy_reward": 0.6796875,
2429
+ "rewards/format_count_numbers": 1.625,
2430
+ "rewards/format_reward": 1.0,
2431
+ "step": 173
2432
+ },
2433
+ {
2434
+ "completion_length": 69.9296875,
2435
+ "epoch": 0.01116637253329055,
2436
+ "grad_norm": 6.091517398086225,
2437
+ "kl": 0.03564453125,
2438
+ "learning_rate": 9.944166345783595e-07,
2439
+ "loss": 0.0014,
2440
+ "reward": 3.5078125,
2441
+ "reward_std": 0.18962866812944412,
2442
+ "rewards/accuracy_reward": 0.7734375,
2443
+ "rewards/format_count_numbers": 1.734375,
2444
+ "rewards/format_reward": 1.0,
2445
+ "step": 174
2446
+ },
2447
+ {
2448
+ "completion_length": 80.5625,
2449
+ "epoch": 0.011230547088079577,
2450
+ "grad_norm": 2.820888222245219,
2451
+ "kl": 0.044189453125,
2452
+ "learning_rate": 9.943845462713388e-07,
2453
+ "loss": 0.0018,
2454
+ "reward": 2.97265625,
2455
+ "reward_std": 0.1426027175039053,
2456
+ "rewards/accuracy_reward": 0.6328125,
2457
+ "rewards/format_count_numbers": 1.33984375,
2458
+ "rewards/format_reward": 1.0,
2459
+ "step": 175
2460
+ },
2461
+ {
2462
+ "completion_length": 80.125,
2463
+ "epoch": 0.011294721642868603,
2464
+ "grad_norm": 2.2693076636170884,
2465
+ "kl": 0.05224609375,
2466
+ "learning_rate": 9.943524579643178e-07,
2467
+ "loss": 0.0021,
2468
+ "reward": 3.0703125,
2469
+ "reward_std": 0.27271443605422974,
2470
+ "rewards/accuracy_reward": 0.34375,
2471
+ "rewards/format_count_numbers": 1.7265625,
2472
+ "rewards/format_reward": 1.0,
2473
+ "step": 176
2474
+ },
2475
+ {
2476
+ "completion_length": 71.1640625,
2477
+ "epoch": 0.011358896197657628,
2478
+ "grad_norm": 5.291209352425651,
2479
+ "kl": 0.03515625,
2480
+ "learning_rate": 9.943203696572968e-07,
2481
+ "loss": 0.0014,
2482
+ "reward": 2.99609375,
2483
+ "reward_std": 0.3106383979320526,
2484
+ "rewards/accuracy_reward": 0.5,
2485
+ "rewards/format_count_numbers": 1.49609375,
2486
+ "rewards/format_reward": 1.0,
2487
+ "step": 177
2488
+ },
2489
+ {
2490
+ "completion_length": 73.984375,
2491
+ "epoch": 0.011423070752446654,
2492
+ "grad_norm": 5.5675141265794945,
2493
+ "kl": 0.039306640625,
2494
+ "learning_rate": 9.94288281350276e-07,
2495
+ "loss": 0.0016,
2496
+ "reward": 3.31640625,
2497
+ "reward_std": 0.2747081220149994,
2498
+ "rewards/accuracy_reward": 0.71875,
2499
+ "rewards/format_count_numbers": 1.60546875,
2500
+ "rewards/format_reward": 0.9921875,
2501
+ "step": 178
2502
+ },
2503
+ {
2504
+ "completion_length": 70.0703125,
2505
+ "epoch": 0.011487245307235681,
2506
+ "grad_norm": 6.985645753951893,
2507
+ "kl": 0.0343017578125,
2508
+ "learning_rate": 9.94256193043255e-07,
2509
+ "loss": 0.0014,
2510
+ "reward": 3.15234375,
2511
+ "reward_std": 0.17097023129463196,
2512
+ "rewards/accuracy_reward": 0.65625,
2513
+ "rewards/format_count_numbers": 1.49609375,
2514
+ "rewards/format_reward": 1.0,
2515
+ "step": 179
2516
+ },
2517
+ {
2518
+ "completion_length": 71.8203125,
2519
+ "epoch": 0.011551419862024707,
2520
+ "grad_norm": 7.739954317659845,
2521
+ "kl": 0.041259765625,
2522
+ "learning_rate": 9.942241047362342e-07,
2523
+ "loss": 0.0017,
2524
+ "reward": 3.19140625,
2525
+ "reward_std": 0.16861121356487274,
2526
+ "rewards/accuracy_reward": 0.8203125,
2527
+ "rewards/format_count_numbers": 1.37109375,
2528
+ "rewards/format_reward": 1.0,
2529
+ "step": 180
2530
+ },
2531
+ {
2532
+ "completion_length": 84.7265625,
2533
+ "epoch": 0.011615594416813733,
2534
+ "grad_norm": 9.13554190308794,
2535
+ "kl": 0.04150390625,
2536
+ "learning_rate": 9.941920164292132e-07,
2537
+ "loss": 0.0017,
2538
+ "reward": 3.16015625,
2539
+ "reward_std": 0.18764331191778183,
2540
+ "rewards/accuracy_reward": 0.4453125,
2541
+ "rewards/format_count_numbers": 1.72265625,
2542
+ "rewards/format_reward": 0.9921875,
2543
+ "step": 181
2544
+ },
2545
+ {
2546
+ "completion_length": 68.8125,
2547
+ "epoch": 0.01167976897160276,
2548
+ "grad_norm": 6.684857907458709,
2549
+ "kl": 0.037109375,
2550
+ "learning_rate": 9.941599281221922e-07,
2551
+ "loss": 0.0015,
2552
+ "reward": 3.42578125,
2553
+ "reward_std": 0.10340797528624535,
2554
+ "rewards/accuracy_reward": 0.8046875,
2555
+ "rewards/format_count_numbers": 1.62109375,
2556
+ "rewards/format_reward": 1.0,
2557
+ "step": 182
2558
+ },
2559
+ {
2560
+ "completion_length": 62.53125,
2561
+ "epoch": 0.011743943526391786,
2562
+ "grad_norm": 20.276682439562684,
2563
+ "kl": 0.0408935546875,
2564
+ "learning_rate": 9.941278398151714e-07,
2565
+ "loss": 0.0016,
2566
+ "reward": 2.91796875,
2567
+ "reward_std": 0.2412276715040207,
2568
+ "rewards/accuracy_reward": 0.796875,
2569
+ "rewards/format_count_numbers": 1.12109375,
2570
+ "rewards/format_reward": 1.0,
2571
+ "step": 183
2572
+ },
2573
+ {
2574
+ "completion_length": 73.6484375,
2575
+ "epoch": 0.011808118081180811,
2576
+ "grad_norm": 1.2059821012195944,
2577
+ "kl": 0.036376953125,
2578
+ "learning_rate": 9.940957515081504e-07,
2579
+ "loss": 0.0015,
2580
+ "reward": 3.296875,
2581
+ "reward_std": 0.11225596815347672,
2582
+ "rewards/accuracy_reward": 0.6875,
2583
+ "rewards/format_count_numbers": 1.609375,
2584
+ "rewards/format_reward": 1.0,
2585
+ "step": 184
2586
+ },
2587
+ {
2588
+ "completion_length": 63.8671875,
2589
+ "epoch": 0.011872292635969837,
2590
+ "grad_norm": 3.6775666032489127,
2591
+ "kl": 0.035888671875,
2592
+ "learning_rate": 9.940636632011294e-07,
2593
+ "loss": 0.0014,
2594
+ "reward": 3.5390625,
2595
+ "reward_std": 0.18884866684675217,
2596
+ "rewards/accuracy_reward": 0.7890625,
2597
+ "rewards/format_count_numbers": 1.75,
2598
+ "rewards/format_reward": 1.0,
2599
+ "step": 185
2600
+ },
2601
+ {
2602
+ "completion_length": 72.78125,
2603
+ "epoch": 0.011936467190758865,
2604
+ "grad_norm": 4.4157184419582975,
2605
+ "kl": 0.041015625,
2606
+ "learning_rate": 9.940315748941084e-07,
2607
+ "loss": 0.0016,
2608
+ "reward": 3.25,
2609
+ "reward_std": 0.23224648088216782,
2610
+ "rewards/accuracy_reward": 0.7890625,
2611
+ "rewards/format_count_numbers": 1.4765625,
2612
+ "rewards/format_reward": 0.984375,
2613
+ "step": 186
2614
+ },
2615
+ {
2616
+ "completion_length": 71.859375,
2617
+ "epoch": 0.01200064174554789,
2618
+ "grad_norm": 9.668761760285799,
2619
+ "kl": 0.0509033203125,
2620
+ "learning_rate": 9.939994865870876e-07,
2621
+ "loss": 0.002,
2622
+ "reward": 3.3203125,
2623
+ "reward_std": 0.23759140819311142,
2624
+ "rewards/accuracy_reward": 0.703125,
2625
+ "rewards/format_count_numbers": 1.6171875,
2626
+ "rewards/format_reward": 1.0,
2627
+ "step": 187
2628
+ },
2629
+ {
2630
+ "completion_length": 80.5859375,
2631
+ "epoch": 0.012064816300336916,
2632
+ "grad_norm": 3.460844463396569,
2633
+ "kl": 0.0325927734375,
2634
+ "learning_rate": 9.939673982800666e-07,
2635
+ "loss": 0.0013,
2636
+ "reward": 2.9921875,
2637
+ "reward_std": 0.24632348865270615,
2638
+ "rewards/accuracy_reward": 0.6328125,
2639
+ "rewards/format_count_numbers": 1.3671875,
2640
+ "rewards/format_reward": 0.9921875,
2641
+ "step": 188
2642
+ },
2643
+ {
2644
+ "completion_length": 73.109375,
2645
+ "epoch": 0.012128990855125943,
2646
+ "grad_norm": 6.373996408717781,
2647
+ "kl": 0.03350830078125,
2648
+ "learning_rate": 9.939353099730458e-07,
2649
+ "loss": 0.0013,
2650
+ "reward": 3.39453125,
2651
+ "reward_std": 0.1775766797363758,
2652
+ "rewards/accuracy_reward": 0.65625,
2653
+ "rewards/format_count_numbers": 1.73828125,
2654
+ "rewards/format_reward": 1.0,
2655
+ "step": 189
2656
+ },
2657
+ {
2658
+ "completion_length": 70.765625,
2659
+ "epoch": 0.012193165409914969,
2660
+ "grad_norm": 10.07291127206197,
2661
+ "kl": 0.0396728515625,
2662
+ "learning_rate": 9.939032216660248e-07,
2663
+ "loss": 0.0016,
2664
+ "reward": 3.1953125,
2665
+ "reward_std": 0.14389308914542198,
2666
+ "rewards/accuracy_reward": 0.7109375,
2667
+ "rewards/format_count_numbers": 1.484375,
2668
+ "rewards/format_reward": 1.0,
2669
+ "step": 190
2670
+ },
2671
+ {
2672
+ "completion_length": 87.0390625,
2673
+ "epoch": 0.012257339964703995,
2674
+ "grad_norm": 4.055183447098594,
2675
+ "kl": 0.0389404296875,
2676
+ "learning_rate": 9.93871133359004e-07,
2677
+ "loss": 0.0016,
2678
+ "reward": 3.34765625,
2679
+ "reward_std": 0.20216327160596848,
2680
+ "rewards/accuracy_reward": 0.625,
2681
+ "rewards/format_count_numbers": 1.72265625,
2682
+ "rewards/format_reward": 1.0,
2683
+ "step": 191
2684
+ },
2685
+ {
2686
+ "completion_length": 72.328125,
2687
+ "epoch": 0.01232151451949302,
2688
+ "grad_norm": 2.64817332710522,
2689
+ "kl": 0.056396484375,
2690
+ "learning_rate": 9.93839045051983e-07,
2691
+ "loss": 0.0023,
2692
+ "reward": 3.703125,
2693
+ "reward_std": 0.17855798825621605,
2694
+ "rewards/accuracy_reward": 0.8359375,
2695
+ "rewards/format_count_numbers": 1.8671875,
2696
+ "rewards/format_reward": 1.0,
2697
+ "step": 192
2698
+ },
2699
+ {
2700
+ "completion_length": 71.125,
2701
+ "epoch": 0.012385689074282048,
2702
+ "grad_norm": 2.216725629073317,
2703
+ "kl": 0.0364990234375,
2704
+ "learning_rate": 9.93806956744962e-07,
2705
+ "loss": 0.0015,
2706
+ "reward": 3.11328125,
2707
+ "reward_std": 0.20756448060274124,
2708
+ "rewards/accuracy_reward": 0.625,
2709
+ "rewards/format_count_numbers": 1.48828125,
2710
+ "rewards/format_reward": 1.0,
2711
+ "step": 193
2712
+ },
2713
+ {
2714
+ "completion_length": 75.53125,
2715
+ "epoch": 0.012449863629071073,
2716
+ "grad_norm": 11.231387091604994,
2717
+ "kl": 0.0382080078125,
2718
+ "learning_rate": 9.93774868437941e-07,
2719
+ "loss": 0.0015,
2720
+ "reward": 2.97265625,
2721
+ "reward_std": 0.2857213169336319,
2722
+ "rewards/accuracy_reward": 0.734375,
2723
+ "rewards/format_count_numbers": 1.23828125,
2724
+ "rewards/format_reward": 1.0,
2725
+ "step": 194
2726
+ },
2727
+ {
2728
+ "completion_length": 81.8046875,
2729
+ "epoch": 0.012514038183860099,
2730
+ "grad_norm": 2.6049661013831455,
2731
+ "kl": 0.03643798828125,
2732
+ "learning_rate": 9.937427801309202e-07,
2733
+ "loss": 0.0015,
2734
+ "reward": 3.37890625,
2735
+ "reward_std": 0.3019161969423294,
2736
+ "rewards/accuracy_reward": 0.5546875,
2737
+ "rewards/format_count_numbers": 1.83984375,
2738
+ "rewards/format_reward": 0.984375,
2739
+ "step": 195
2740
+ },
2741
+ {
2742
+ "completion_length": 79.828125,
2743
+ "epoch": 0.012578212738649126,
2744
+ "grad_norm": 5.08982880552597,
2745
+ "kl": 0.044189453125,
2746
+ "learning_rate": 9.937106918238992e-07,
2747
+ "loss": 0.0018,
2748
+ "reward": 3.02734375,
2749
+ "reward_std": 0.26120351254940033,
2750
+ "rewards/accuracy_reward": 0.546875,
2751
+ "rewards/format_count_numbers": 1.48046875,
2752
+ "rewards/format_reward": 1.0,
2753
+ "step": 196
2754
+ },
2755
+ {
2756
+ "completion_length": 87.5625,
2757
+ "epoch": 0.012642387293438152,
2758
+ "grad_norm": 2.5047610674660783,
2759
+ "kl": 0.02960205078125,
2760
+ "learning_rate": 9.936786035168785e-07,
2761
+ "loss": 0.0012,
2762
+ "reward": 3.0859375,
2763
+ "reward_std": 0.252044215798378,
2764
+ "rewards/accuracy_reward": 0.59375,
2765
+ "rewards/format_count_numbers": 1.4921875,
2766
+ "rewards/format_reward": 1.0,
2767
+ "step": 197
2768
+ },
2769
+ {
2770
+ "completion_length": 89.09375,
2771
+ "epoch": 0.012706561848227178,
2772
+ "grad_norm": 3.913485159688576,
2773
+ "kl": 0.0316162109375,
2774
+ "learning_rate": 9.936465152098575e-07,
2775
+ "loss": 0.0013,
2776
+ "reward": 3.2265625,
2777
+ "reward_std": 0.2882782071828842,
2778
+ "rewards/accuracy_reward": 0.6328125,
2779
+ "rewards/format_count_numbers": 1.59375,
2780
+ "rewards/format_reward": 1.0,
2781
+ "step": 198
2782
+ },
2783
+ {
2784
+ "completion_length": 96.53125,
2785
+ "epoch": 0.012770736403016203,
2786
+ "grad_norm": 3.69506908248979,
2787
+ "kl": 0.0374755859375,
2788
+ "learning_rate": 9.936144269028367e-07,
2789
+ "loss": 0.0015,
2790
+ "reward": 3.234375,
2791
+ "reward_std": 0.2950380742549896,
2792
+ "rewards/accuracy_reward": 0.5234375,
2793
+ "rewards/format_count_numbers": 1.7109375,
2794
+ "rewards/format_reward": 1.0,
2795
+ "step": 199
2796
+ },
2797
+ {
2798
+ "completion_length": 78.390625,
2799
+ "epoch": 0.01283491095780523,
2800
+ "grad_norm": 5.212393233018134,
2801
+ "kl": 0.0321044921875,
2802
+ "learning_rate": 9.935823385958157e-07,
2803
+ "loss": 0.0013,
2804
+ "reward": 3.40234375,
2805
+ "reward_std": 0.20039305090904236,
2806
+ "rewards/accuracy_reward": 0.65625,
2807
+ "rewards/format_count_numbers": 1.74609375,
2808
+ "rewards/format_reward": 1.0,
2809
+ "step": 200
2810
+ }
2811
+ ],
2812
+ "logging_steps": 1.0,
2813
+ "max_steps": 31164,
2814
+ "num_input_tokens_seen": 0,
2815
+ "num_train_epochs": 2,
2816
+ "save_steps": 100,
2817
+ "stateful_callbacks": {
2818
+ "TrainerControl": {
2819
+ "args": {
2820
+ "should_epoch_stop": false,
2821
+ "should_evaluate": false,
2822
+ "should_log": false,
2823
+ "should_save": true,
2824
+ "should_training_stop": false
2825
+ },
2826
+ "attributes": {}
2827
+ }
2828
+ },
2829
+ "total_flos": 0.0,
2830
+ "train_batch_size": 1,
2831
+ "trial_name": null,
2832
+ "trial_params": null
2833
+ }
checkpoint-200/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-300/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-400/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
checkpoint-400/chat_template.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
3
+ }