--- license: apache-2.0 tags: - generated_from_trainer datasets: - scientific_papers model-index: - name: longformer_summarise results: [] --- # longformer_summarise This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on the scientific_papers dataset. It achieves the following results on the evaluation set: - Loss: 2.3003 - Rouge2 Precision: 0.1654 - Rouge2 Recall: 0.0966 - Rouge2 Fmeasure: 0.1118 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:| | 2.909 | 0.08 | 10 | 2.8969 | 0.09 | 0.1439 | 0.0953 | | 2.615 | 0.16 | 20 | 2.6182 | 0.1232 | 0.0865 | 0.0924 | | 2.581 | 0.24 | 30 | 2.4687 | 0.1357 | 0.0733 | 0.09 | | 2.1294 | 0.32 | 40 | 2.5215 | 0.1495 | 0.0932 | 0.1044 | | 2.8083 | 0.4 | 50 | 2.3870 | 0.1794 | 0.1054 | 0.1224 | | 3.0704 | 0.48 | 60 | 2.3676 | 0.1572 | 0.0989 | 0.1108 | | 2.4716 | 0.56 | 70 | 2.3554 | 0.1707 | 0.1039 | 0.1198 | | 2.454 | 0.64 | 80 | 2.3411 | 0.1619 | 0.0943 | 0.1115 | | 2.3046 | 0.72 | 90 | 2.3105 | 0.1547 | 0.0965 | 0.1116 | | 1.7467 | 0.8 | 100 | 2.3417 | 0.1551 | 0.0877 | 0.1046 | | 2.7696 | 0.88 | 110 | 2.3226 | 0.1543 | 0.0954 | 0.1085 | | 2.4999 | 0.96 | 120 | 2.3003 | 0.1654 | 0.0966 | 0.1118 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 1.2.1 - Tokenizers 0.12.1