--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: rishiraj/CatPPT-base pipeline_tag: text-generation --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.3.0` ```yaml base_model: rishiraj/CatPPT-base model_type: MistralForCausalLM tokenizer_type: LlamaTokenizer is_mistral_derived_model: true load_in_8bit: false load_in_4bit: true strict: false model_config: output_router_logits: true datasets: - path: teknium/openhermes type: alpaca prompt_style: chatml - path: garage-bAInd/Open-Platypus type: alpaca prompt_style: chatml - path: LDJnr/Capybara type: sharegpt conversation: chatml - path: datasets/samantha-1.1.json type: sharegpt conversation: chatml - path: datasets/grammarly-coedit-alpaca.jsonl type: alpaca prompt_style: chatml - path: datasets/dolphin-coder-codegen.jsonl type: alpaca_w_system.load_open_orca_chatml - path: datasets/dolphin-coder-translate.jsonl type: alpaca_w_system.load_open_orca_chatml - path: datasets/data-evol_instruct-decontaminated-alpaca.jsonl type: alpaca prompt_style: chatml - path: datasets/data-oss_instruct-decontaminated-alpaca.jsonl type: alpaca prompt_style: chatml - path: jondurbin/airoboros-3.2 type: sharegpt conversations: chatml dataset_prepared_path: last_run_prepared val_set_size: 0.01 output_dir: ./qlora-out-2 seed: 420 adapter: qlora lora_model_dir: sequence_len: 8192 sample_packing: true pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: lora_target_linear: true lora_fan_in_fan_out: lora_modules_to_save: - embed_tokens - lm_head wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 2 micro_batch_size: 3 num_epochs: 1.5 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 0 evals_per_epoch: 20 eval_table_size: saves_per_epoch: 20 debug: deepspeed: weight_decay: 0.05 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" unk_token: "" eos_token: "<|im_end|>" tokens: - "<|im_start|>" trust_remote_code: true ```

# qlora-out-2 This model is a fine-tuned version of [rishiraj/CatPPT-base](https://huggingface.co/rishiraj/CatPPT-base) on multiple datasets. It achieves the following results on the evaluation set: - Loss: 0.4258 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 3 - eval_batch_size: 3 - seed: 420 - distributed_type: multi-GPU - num_devices: 3 - gradient_accumulation_steps: 2 - total_train_batch_size: 18 - total_eval_batch_size: 9 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 1.5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.7691 | 0.0 | 1 | 0.7027 | | 0.5556 | 0.05 | 135 | 0.5808 | | 0.597 | 0.1 | 270 | 0.5488 | | 0.5979 | 0.15 | 405 | 0.5277 | | 0.4693 | 0.2 | 540 | 0.5108 | | 0.5123 | 0.25 | 675 | 0.4978 | | 0.4394 | 0.3 | 810 | 0.4883 | | 0.46 | 0.35 | 945 | 0.4802 | | 0.4472 | 0.4 | 1080 | 0.4748 | | 0.47 | 0.45 | 1215 | 0.4687 | | 0.4249 | 0.5 | 1350 | 0.4637 | | 0.4823 | 0.55 | 1485 | 0.4599 | | 0.4209 | 0.6 | 1620 | 0.4555 | | 0.4909 | 0.65 | 1755 | 0.4517 | | 0.4663 | 0.7 | 1890 | 0.4470 | | 0.4215 | 0.75 | 2025 | 0.4437 | | 0.4267 | 0.8 | 2160 | 0.4398 | | 0.4109 | 0.85 | 2295 | 0.4364 | | 0.4099 | 0.9 | 2430 | 0.4331 | | 0.447 | 0.95 | 2565 | 0.4298 | | 0.4412 | 1.0 | 2700 | 0.4272 | | 0.3838 | 1.03 | 2835 | 0.4287 | | 0.4262 | 1.08 | 2970 | 0.4274 | | 0.3889 | 1.13 | 3105 | 0.4263 | | 0.3114 | 1.18 | 3240 | 0.4255 | | 0.3685 | 1.23 | 3375 | 0.4256 | | 0.392 | 1.28 | 3510 | 0.4253 | | 0.3751 | 1.33 | 3645 | 0.4255 | | 0.3756 | 1.39 | 3780 | 0.4256 | | 0.3108 | 1.44 | 3915 | 0.4258 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.1+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0 ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.0