soujanyaporia
commited on
Commit
β’
a04d5c8
1
Parent(s):
386c9b1
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- amaai-lab/MusicBench
|
5 |
+
tags:
|
6 |
+
- music
|
7 |
+
---
|
8 |
+
|
9 |
+
<div align="center">
|
10 |
+
|
11 |
+
# Mustango: Toward Controllable Text-to-Music Generation
|
12 |
+
|
13 |
+
[Demo]() [Model](https://huggingface.co/declare-lab/mustango) [Website and Examples](https://amaai-lab.github.io/mustango/) [Paper](https://arxiv.org/abs/2311.08355) [Dataset](https://huggingface.co/datasets/amaai-lab/MusicBench)
|
14 |
+
</div>
|
15 |
+
|
16 |
+
Meet Mustango, an exciting addition to the vibrant landscape of Multimodal Large Language Models designed for controlled music generation. Mustango leverages Latent Diffusion Model (LDM), Flan-T5, and musical features to do the magic!
|
17 |
+
|
18 |
+
<div align="center">
|
19 |
+
<img src="img/mustango.jpg" width="500"/>
|
20 |
+
</div>
|
21 |
+
|
22 |
+
|
23 |
+
## Quickstart Guide
|
24 |
+
|
25 |
+
Generate music from a text prompt:
|
26 |
+
|
27 |
+
```python
|
28 |
+
import IPython
|
29 |
+
import soundfile as sf
|
30 |
+
from mustango import Mustango
|
31 |
+
|
32 |
+
model = Mustango("declare-lab/mustango")
|
33 |
+
|
34 |
+
prompt = "This is a new age piece. There is a flute playing the main melody with a lot of staccato notes. The rhythmic background consists of a medium tempo electronic drum beat with percussive elements all over the spectrum. There is a playful atmosphere to the piece. This piece can be used in the soundtrack of a children's TV show or an advertisement jingle."
|
35 |
+
|
36 |
+
music = model.generate(prompt)
|
37 |
+
sf.write(f"{prompt}.wav", audio, samplerate=16000)
|
38 |
+
IPython.display.Audio(data=audio, rate=16000)
|
39 |
+
```
|
40 |
+
|
41 |
+
## Datasets
|
42 |
+
|
43 |
+
The [MusicBench](https://huggingface.co/datasets/amaai-lab/MusicBench) dataset contains 52k music fragments with a rich music-specific text caption.
|
44 |
+
## Subjective Evaluation by Expert Listeners
|
45 |
+
|
46 |
+
| **Model** | **Dataset** | **Pre-trained** | **Relevance** β | **Chord Match** β | **Tempo Match** β | **Audio Quality** β | **Musicality** β | **Rhythmic Presence and Stability** β | **Harmony and Consonance** β |
|
47 |
+
|-----------|-------------|:-----------------:|:-----------:|:-----------:|:-----------:|:----------:|:----------:|:----------:|:----------:|
|
48 |
+
| Tango | MusicCaps | β | 4.35 | 2.75 | 3.88 | 3.35 | 2.83 | 3.95 | 3.84 |
|
49 |
+
| Tango | MusicBench | β | 4.91 | 3.61 | 3.86 | 3.88 | 3.54 | 4.01 | 4.34 |
|
50 |
+
| Mustango | MusicBench | β | 5.49 | 5.76 | 4.98 | 4.30 | 4.28 | 4.65 | 5.18 |
|
51 |
+
| Mustango | MusicBench | β | 5.75 | 6.06 | 5.11 | 4.80 | 4.80 | 4.75 | 5.59 |
|
52 |
+
|
53 |
+
|
54 |
+
|
55 |
+
|
56 |
+
## Training
|
57 |
+
|
58 |
+
We use the `accelerate` package from Hugging Face for multi-gpu training. Run `accelerate config` from terminal and set up your run configuration by the answering the questions asked.
|
59 |
+
|
60 |
+
You can now train **Mustango** on the MusicBench dataset using:
|
61 |
+
|
62 |
+
```bash
|
63 |
+
accelerate launch train.py \
|
64 |
+
--text_encoder_name="google/flan-t5-large" \
|
65 |
+
--scheduler_name="stabilityai/stable-diffusion-2-1" \
|
66 |
+
--unet_model_config="configs/diffusion_model_config_munet.json" \
|
67 |
+
--model_type Mustango --freeze_text_encoder --uncondition_all --uncondition_single \
|
68 |
+
--drop_sentences --random_pick_text_column --snr_gamma 5 \
|
69 |
+
```
|
70 |
+
|
71 |
+
The `--model_type` flag allows to choose either Mustango, or Tango to be trained with the same code. However, do note that you also need to change `--unet_model_config` to the relevant config: diffusion_model_config_munet for Mustango; diffusion_model_config for Tango.
|
72 |
+
|
73 |
+
The arguments `--uncondition_all`, `--uncondition_single`, `--drop_sentences` control the dropout functions as per Section 5.2 in our paper. The argument of `--random_pick_text_column` allows to randomly pick between two input text prompts - in the case of MusicBench, we pick between ChatGPT rephrased captions and original enhanced MusicCaps prompts, as depicted in Figure 1 in our paper.
|
74 |
+
|
75 |
+
Recommended training time from scratch on MusicBench is at least 40 epochs.
|
76 |
+
|
77 |
+
|
78 |
+
## Model Zoo
|
79 |
+
|
80 |
+
We have released the following models:
|
81 |
+
|
82 |
+
Mustango Pretrained: https://huggingface.co/declare-lab/mustango
|
83 |
+
|
84 |
+
|
85 |
+
Mustango: Coming soon!
|
86 |
+
|
87 |
+
|
88 |
+
## Citation
|
89 |
+
Please consider citing the following article if you found our work useful:
|
90 |
+
```
|
91 |
+
@misc{melechovsky2023mustango,
|
92 |
+
title={Mustango: Toward Controllable Text-to-Music Generation},
|
93 |
+
author={Jan Melechovsky and Zixun Guo and Deepanway Ghosal and Navonil Majumder and Dorien Herremans and Soujanya Poria},
|
94 |
+
year={2023},
|
95 |
+
eprint={2311.08355},
|
96 |
+
archivePrefix={arXiv},
|
97 |
+
}
|
98 |
+
```
|