Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,270 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!-- markdownlint-disable first-line-h1 -->
|
2 |
+
<!-- markdownlint-disable html -->
|
3 |
+
<!-- markdownlint-disable no-duplicate-header -->
|
4 |
+
|
5 |
+
<div align="center">
|
6 |
+
<img src="figures/logo.svg" width="60%" alt="DeepSeek LLM" />
|
7 |
+
</div>
|
8 |
+
<hr>
|
9 |
+
<div align="center">
|
10 |
+
|
11 |
+
<a href="https://www.deepseek.com/" target="_blank">
|
12 |
+
<img alt="Homepage" src="figures/badge.svg" />
|
13 |
+
</a>
|
14 |
+
<a href="https://chat.deepseek.com/" target="_blank">
|
15 |
+
<img alt="Chat" src="https://img.shields.io/badge/🤖%20Chat-DeepSeek%20LLM-536af5?color=536af5&logoColor=white" />
|
16 |
+
</a>
|
17 |
+
<a href="https://huggingface.co/deepseek-ai" target="_blank">
|
18 |
+
<img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-DeepSeek%20AI-ffc107?color=ffc107&logoColor=white" />
|
19 |
+
</a>
|
20 |
+
|
21 |
+
</div>
|
22 |
+
|
23 |
+
<div align="center">
|
24 |
+
|
25 |
+
<a href="https://discord.gg/Tc7c45Zzu5" target="_blank">
|
26 |
+
<img alt="Discord" src="https://img.shields.io/badge/Discord-DeepSeek%20AI-7289da?logo=discord&logoColor=white&color=7289da" />
|
27 |
+
</a>
|
28 |
+
<a href="figures/qr.jpeg" target="_blank">
|
29 |
+
<img alt="Wechat" src="https://img.shields.io/badge/WeChat-DeepSeek%20AI-brightgreen?logo=wechat&logoColor=white" />
|
30 |
+
</a>
|
31 |
+
<a href="https://twitter.com/deepseek_ai" target="_blank">
|
32 |
+
<img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-deepseek_ai-white?logo=x&logoColor=white" />
|
33 |
+
</a>
|
34 |
+
|
35 |
+
</div>
|
36 |
+
|
37 |
+
<div align="center">
|
38 |
+
|
39 |
+
<a href="LICENSE-CODE">
|
40 |
+
<img alt="Code License" src="https://img.shields.io/badge/Code_License-MIT-f5de53?&color=f5de53">
|
41 |
+
</a>
|
42 |
+
<a href="LICENSE-MODEL">
|
43 |
+
<img alt="Model License" src="https://img.shields.io/badge/Model_License-Model_Agreement-f5de53?&color=f5de53">
|
44 |
+
</a>
|
45 |
+
</div>
|
46 |
+
|
47 |
+
|
48 |
+
<p align="center">
|
49 |
+
<a href="#2-model-downloads">Model Download</a> |
|
50 |
+
<a href="#3-evaluation-results">Evaluation Results</a> |
|
51 |
+
<a href="#4-model-architecture">Model Architecture</a> |
|
52 |
+
<a href="#6-api-platform">API Platform</a> |
|
53 |
+
<a href="#8-license">License</a> |
|
54 |
+
<a href="#9-citation">Citation</a>
|
55 |
+
</p>
|
56 |
+
|
57 |
+
<p align="center">
|
58 |
+
<a href="paper.pdf"><b>Paper Link</b>👁️</a>
|
59 |
+
</p>
|
60 |
+
|
61 |
+
# DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model
|
62 |
+
|
63 |
+
## 1. Introduction
|
64 |
+
Today, we’re introducing DeepSeek-V2, a strong Mixture-of-Experts (MoE) language model characterized by economical training and efficient inference. It comprises 236B total parameters, of which 21B are activated for each token. Compared with DeepSeek 67B, DeepSeek-V2 achieves stronger performance, and meanwhile saves 42.5% of training costs, reduces the KV cache by 93.3%, and boosts the maximum generation throughput to 5.76 times.
|
65 |
+
|
66 |
+
<p align="center">
|
67 |
+
|
68 |
+
<div style="display: flex; justify-content: center;">
|
69 |
+
<img src="figures/activationparameters.png" style="height:300px; width:auto; margin-right:10px">
|
70 |
+
<img src="figures/trainingcost.png" style="height:300px; width:auto; margin-left:10px">
|
71 |
+
</div>
|
72 |
+
</p>
|
73 |
+
We pretrained DeepSeek-V2 on a diverse and high-quality corpus comprising 8.1 trillion tokens. This comprehensive pretraining was followed by a process of Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) to fully unleash the model's capabilities. The evaluation results validate the effectiveness of our approach as DeepSeek-V2 achieves remarkable performance on both standard benchmarks and open-ended generation evaluation.
|
74 |
+
|
75 |
+
## 2. Model Downloads
|
76 |
+
|
77 |
+
<div align="center">
|
78 |
+
|
79 |
+
| **Model** | **Context Length** | **Download** |
|
80 |
+
| :------------: | :------------: | :------------: |
|
81 |
+
| DeepSeek-V2 | 128k | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-V2) |
|
82 |
+
| DeepSeek-V2-Chat(RL) | 128k | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-V2-Chat) |
|
83 |
+
|
84 |
+
</div>
|
85 |
+
|
86 |
+
Due to the constraints of HuggingFace, the open-source code currently experiences slower performance than our internal codebase when running on GPUs with Huggingface. To facilitate the efficient execution of our model, we offer a dedicated vllm solution that optimizes performance for running our model effectively.
|
87 |
+
|
88 |
+
## 3. Evaluation Results
|
89 |
+
### Base Model
|
90 |
+
#### Standard Benchmark
|
91 |
+
|
92 |
+
<div align="center">
|
93 |
+
|
94 |
+
| **Benchmark** | **Domain** | **LLaMA3 70B** | **Mixtral 8x22B** | **DeepSeek V1 (Dense-67B)** | **DeepSeek V2 (MoE-236B)** |
|
95 |
+
|:-----------:|:--------:|:------------:|:---------------:|:-------------------------:|:------------------------:|
|
96 |
+
| **MMLU** | English | 78.9 | 77.6 | 71.3 | 78.5 |
|
97 |
+
| **BBH** | English | 81.0 | 78.9 | 68.7 | 78.9 |
|
98 |
+
| **C-Eval** | Chinese | 67.5 | 58.6 | 66.1 | 81.7 |
|
99 |
+
| **CMMLU** | Chinese | 69.3 | 60.0 | 70.8 | 84.0 |
|
100 |
+
| **HumanEval** | Code | 52.4 | 39.0 | 42.7 | 40.9 |
|
101 |
+
| **MBPP** | Code | 68.6 | 64.2 | 57.4 | 66.6 |
|
102 |
+
| **GSM8K** | Math | 83.0 | 80.3 | 63.4 | 79.2 |
|
103 |
+
| **Math** | Math | 42.2 | 42.5 | 18.7 | 43.6 |
|
104 |
+
|
105 |
+
</div>
|
106 |
+
For more evaluation details, such as few-shot settings and prompts, please check our paper.
|
107 |
+
|
108 |
+
#### Context Window
|
109 |
+
<p align="center">
|
110 |
+
<img width="80%" src="figures/niah.png">
|
111 |
+
</p>
|
112 |
+
|
113 |
+
Evaluation results on the ``Needle In A Haystack`` (NIAH) tests. DeepSeek-V2 performs well across all context window lengths up to **128K**.
|
114 |
+
|
115 |
+
### Chat Model
|
116 |
+
#### Standard Benchmark
|
117 |
+
<div align="center">
|
118 |
+
|
119 |
+
| Benchmark | Domain | QWen1.5 72B Chat | Mixtral 8x22B | LLaMA3 70B Instruct | DeepSeek V1 Chat (SFT) | DeepSeek V2 Chat(SFT) | DeepSeek V2 Chat(RL) |
|
120 |
+
|:-----------:|:----------------:|:------------------:|:---------------:|:---------------------:|:-------------:|:-----------------------:|:----------------------:|
|
121 |
+
| **MMLU** | English | 76.2 | 77.8 | 80.3 | 71.1 | 78.4 | 77.8 |
|
122 |
+
| **BBH** | English | 65.9 | 78.4 | 78.4 | 71.7 | 81.3 | 79.7 |
|
123 |
+
| **C-Eval** | Chinese | 82.2 | 60.0 | 67.9 | 65.2 | 80.9 | 78.0 |
|
124 |
+
| **CMMLU** | Chinese | 82.9 | 61.0 | 70.7 | 67.8 | 82.4 | 81.6 |
|
125 |
+
| **HumanEval** | Code | 68.9 | 75.0 | 76.2 | 73.8 | 76.8 | 81.1 |
|
126 |
+
| **MBPP** | Code | 43.4 | 64.4 | 69.8 | 61.4 | 70.4 | 72.0 |
|
127 |
+
| **LiveCodeBench (1201-0401)** | Code | 18.5 | 24.0 | 32.3 | 19.0 | 28.7 | 31.3 |
|
128 |
+
| **GSM8K** | Math | 81.9 | 87.9 | 93.2 | 84.1 | 90.8 | 92.2 |
|
129 |
+
| **Math** | Math | 40.6 | 49.8 | 48.5 | 32.6 | 52.7 | 53.9 |
|
130 |
+
|
131 |
+
</div>
|
132 |
+
|
133 |
+
#### English Open Ended Generation Evaluation
|
134 |
+
We evaluate our model on AlpacaEval 2.0 and MTBench, showing the competitive performance of DeepSeek-V2-Chat-RL on English conversation generation.
|
135 |
+
<p align="center">
|
136 |
+
<img width="50%" src="figures/mtbench.png" />
|
137 |
+
</p>
|
138 |
+
|
139 |
+
#### Chinese Open Ended Generation Evaluation
|
140 |
+
**Alignbench** (https://arxiv.org/abs/2311.18743)
|
141 |
+
<div align="center">
|
142 |
+
|
143 |
+
| **模型** | **开源/闭源** | **总分** | **中文推理** | **中文语言** |
|
144 |
+
| :---: | :---: | :---: | :---: | :---: |
|
145 |
+
| gpt-4-1106-preview | 闭源 | 8.01 | 7.73 | 8.29 |
|
146 |
+
| DeepSeek-V2 Chat(RL) | 开源 | 7.91 | 7.45 | 8.35 |
|
147 |
+
| erniebot-4.0-202404(文心一言) | 闭源 | 7.89 | 7.61 | 8.17 |
|
148 |
+
| DeepSeek-V2 Chat(SFT) | 开源 | 7.74 | 7.30 | 8.17 |
|
149 |
+
| gpt-4-0613 | 闭源 | 7.53 | 7.47 | 7.59 |
|
150 |
+
| erniebot-4.0-202312(文心一言) | 闭源 | 7.36 | 6.84 | 7.88 |
|
151 |
+
| moonshot-v1-32k-202404(月之暗面) | 闭源 | 7.22 | 6.42 | 8.02 |
|
152 |
+
| Qwen1.5-72B-Chat(通义千问) | 开源 | 7.19 | 6.45 | 7.93 |
|
153 |
+
| DeepSeek-67B-Chat | 开源 | 6.43 | 5.75 | 7.11 |
|
154 |
+
| Yi-34B-Chat(零一万物) | 开源 | 6.12 | 4.86 | 7.38 |
|
155 |
+
| gpt-3.5-turbo-0613 | 闭源 | 6.08 | 5.35 | 6.71 |
|
156 |
+
|
157 |
+
</div>
|
158 |
+
|
159 |
+
#### Coding Benchmarks
|
160 |
+
We evaluate our model on LiveCodeBench (0901-0401), a benchmark designed for live coding challenges. As illustrated, DeepSeek-V2 demonstrates considerable proficiency in LiveCodeBench, achieving a Pass@1 score that surpasses several other sophisticated models. This performance highlights the model's effectiveness in tackling live coding tasks.
|
161 |
+
|
162 |
+
<p align="center">
|
163 |
+
<img width="50%" src="figures/code_benchmarks.png">
|
164 |
+
</p>
|
165 |
+
|
166 |
+
## 4. Model Architecture
|
167 |
+
DeepSeek-V2 adopts innovative architectures to guarantee economical training and efficient inference:
|
168 |
+
- For attention, we design IEAttn, which utilizes low-rank key-value union compression to eliminate the bottleneck of inference-time key-value cache, thus supporting efficient inference.
|
169 |
+
- For Feed-Forward Networks (FFNs), we adopt DeepSeekMoE architecture, a high-performance MoE architecture that enables training stronger models at lower costs.
|
170 |
+
|
171 |
+
<p align="center">
|
172 |
+
<img width="90%" src="figures/architecture.png" />
|
173 |
+
</p>
|
174 |
+
|
175 |
+
## 5. Chat Website
|
176 |
+
You can chat with the DeepSeek-V2 on DeepSeek's official website: [chat.deepseek.com](https://chat.deepseek.com/sign_in)
|
177 |
+
|
178 |
+
## 6. API Platform
|
179 |
+
We also provide OpenAI-Compatible API at DeepSeek Platform: [platform.deepseek.com](https://platform.deepseek.com/). Sign up for over millions of free tokens. And you can also pay-as-you-go at an unbeatable price.
|
180 |
+
|
181 |
+
|
182 |
+
<p align="center">
|
183 |
+
<img width="40%" src="figures/model_price.png">
|
184 |
+
</p>
|
185 |
+
|
186 |
+
|
187 |
+
## 7. How to run locally
|
188 |
+
**To utilize DeepSeek-V2 in BF16 format for inference, 80GB*8 GPUs are required.**
|
189 |
+
### Inference with Huggingface's Transformers
|
190 |
+
You can directly employ [Huggingface's Transformers](https://github.com/huggingface/transformers) for model inference.
|
191 |
+
|
192 |
+
### Text Completion
|
193 |
+
```python
|
194 |
+
import torch
|
195 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
|
196 |
+
|
197 |
+
model_name = "deepseek-ai/DeepSeek-V2"
|
198 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
199 |
+
# `max_memory` should be set based on your devices
|
200 |
+
max_memory = {i: "75GB" for i in range(8)}
|
201 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, device_map="auto", torch_dtype=torch.bfloat16, max_memory=max_memory)
|
202 |
+
model.generation_config = GenerationConfig.from_pretrained(model_name)
|
203 |
+
model.generation_config.pad_token_id = model.generation_config.eos_token_id
|
204 |
+
|
205 |
+
text = "An attention function can be described as mapping a query and a set of key-value pairs to an output, where the query, keys, values, and output are all vectors. The output is"
|
206 |
+
inputs = tokenizer(text, return_tensors="pt")
|
207 |
+
outputs = model.generate(**inputs.to(model.device), max_new_tokens=100)
|
208 |
+
|
209 |
+
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
210 |
+
print(result)
|
211 |
+
```
|
212 |
+
|
213 |
+
### Chat Completion
|
214 |
+
```python
|
215 |
+
import torch
|
216 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
|
217 |
+
|
218 |
+
model_name = "deepseek-ai/DeepSeek-V2-Chat-RL"
|
219 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
220 |
+
# `max_memory` should be set based on your devices
|
221 |
+
max_memory = {i: "75GB" for i in range(8)}
|
222 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, device_map="auto", torch_dtype=torch.bfloat16, max_memory=max_memory)
|
223 |
+
model.generation_config = GenerationConfig.from_pretrained(model_name)
|
224 |
+
model.generation_config.pad_token_id = model.generation_config.eos_token_id
|
225 |
+
|
226 |
+
messages = [
|
227 |
+
{"role": "user", "content": "Write a piece of quicksort code in C++"}
|
228 |
+
]
|
229 |
+
input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
|
230 |
+
outputs = model.generate(input_tensor.to(model.device), max_new_tokens=100)
|
231 |
+
|
232 |
+
result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
|
233 |
+
print(result)
|
234 |
+
```
|
235 |
+
The complete chat template can be founded within `tokenizer_config.json` located in the huggingface model repository/
|
236 |
+
An example of chat template is as belows:
|
237 |
+
```bash
|
238 |
+
<|begin▁of▁sentence|>User: {user_message_1}
|
239 |
+
|
240 |
+
Assistant: {assistant_message_1}<|end▁of▁sentence|>User: {user_message_2}
|
241 |
+
|
242 |
+
Assistant:
|
243 |
+
```
|
244 |
+
You can also add an optional system message:
|
245 |
+
```bash
|
246 |
+
<|begin▁of▁sentence|>{system_message}
|
247 |
+
|
248 |
+
User: {user_message_1}
|
249 |
+
|
250 |
+
Assistant: {assistant_message_1}<|end▁of▁sentence|>User: {user_message_2}
|
251 |
+
|
252 |
+
Assistant:
|
253 |
+
```
|
254 |
+
|
255 |
+
## 8. License
|
256 |
+
This code repository is licensed under [the MIT License](LICENSE-CODE). The use of DeepSeek-V2 Base/Chat models is subject to [the Model License](LICENSE-MODEL). DeepSeek-V2 series (including Base and Chat) supports commercial use.
|
257 |
+
|
258 |
+
## 9. Citation
|
259 |
+
```
|
260 |
+
@misc{deepseek-v2,
|
261 |
+
author = {DeepSeek-AI},
|
262 |
+
title = {DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model},
|
263 |
+
year = {2024},
|
264 |
+
note = {GitHub repository},
|
265 |
+
url = {https://github.com/deepseek-ai/deepseek-v2}
|
266 |
+
}
|
267 |
+
```
|
268 |
+
|
269 |
+
## 10. Contact
|
270 |
+
If you have any questions, please raise an issue or contact us at [[email protected]]([email protected]).
|