|
--- |
|
library_name: transformers |
|
language: |
|
- ru |
|
- en |
|
base_model: |
|
- google/gemma-2-9b-it |
|
license: apache-2.0 |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
# plato-9b |
|
|
|
`plato-9b` is a fine-tuned version of the [`google/gemma-2-9b-it`](https://huggingface.co/google/gemma-2-9b-it) model for generating responses in the Russian language. |
|
This 9-billion parameter model excels at conversational tasks, offering rich contextual understanding and fine-grained results. |
|
|
|
## Usage |
|
|
|
To use `plato-9b` with the `transformers` library: |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("deepvk/plato-9b") |
|
model = AutoModelForCausalLM.from_pretrained("deepvk/plato-9b") |
|
|
|
input_text = "Что стоит посетить в России?" |
|
input_ids = tokenizer(input_text, return_tensors="pt").input_ids |
|
|
|
output = model.generate(input_ids, max_length=150, do_sample=True, temperature=0.7) |
|
response = tokenizer.decode(output[0], skip_special_tokens=True) |
|
print(response) |
|
# Что стоит посетить в России? |
|
# 1. Красная площадь и Кремль в Москве |
|
# 2. Эрмитаж в Санкт-Петербурге |
|
# 3. Байкал |
|
# 4. Соловецкие острова |
|
# 5. Камчатка и её вулканы |
|
# 6. Золотое Кольцо |
|
# 7. Казанский Кремль |
|
# 8. Алтай |
|
# 9. Астраханская область и Волго-Донской канал |
|
# 10. Кавказские горы и Черноморское побережье |
|
# |
|
# Каждое из этих мест предлагает уникальные культурные, исторические и природные достопримечательности, |
|
# которые делают Россию столь удивительной и разнообразной страной. |
|
``` |
|
|
|
## Dataset |
|
|
|
We applied both Supervised Fine-Tuning (SFT) and Preference Optimization (PO). |
|
For SFT, we used an 8B token instruction dataset, with 4B tokens consisting of dialogues and the rest covering math, biology, chemistry, code, and general knowledge. |
|
The PO dataset contains 200M tokens featuring common knowledge instructions. |
|
We trained on both datasets for several epochs. |
|
|
|
## Evaluation |
|
|
|
To evaluate, we applied LLM-as-a-judge approach on academic tasks. |
|
Specifically, we used `arena-general-ru` and `arena-hard-ru` with `gpt4o` judge and `gpt4o-mini` baseline. |
|
|
|
### arena-general-ru |
|
|
|
| Model | Score | Score w/ SC | |
|
|-------------------------------------------------------------------------------|----------------------|----------------------| |
|
| gpt-4o-2024-11-20 | 81.87 (-2.04, +1.81) | 78.42 (-2.39, +2.33) | |
|
| gpt-4o-mini-2024-07-18 | 50.00 (-0.00, +0.00) | 50.00 (-0.00, +0.00) | |
|
| deepvk/plato-9b | 41.27 (-2.18, +2.24) | 32.13 (-1.97, +2.05) | |
|
| [t-tech/T-lite-it-1.0](https://huggingface.co/t-tech/T-lite-it-1.0) | 38.52 (-2.04, +2.98) | 30.38 (-1.90, +3.15) | |
|
| [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it) | 27.46 (-2.06, +1.74) | 25.80 (-2.09, +1.98) | |
|
| [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) | 24.60 (-2.36, +2.38) | 23.67 (-2.36, +2.28) | |
|
| [IlyaGusev/saiga_gemma2_9b](https://huggingface.co/IlyaGusev/saiga_gemma2_9b) | 17.83 (-1.95, +1.66) | 18.46 (-2.22, +1.69) | |
|
|
|
|
|
### arena-hard-ru |
|
|
|
| Model | Score | Score w/ SC | |
|
|-------------------------------------------------------------------------------|----------------------|----------------------| |
|
| gpt-4o-2024-11-20 | 85.70 (-1.45, +1.38) | 80.19 (-1.99, +2.04) | |
|
| gpt-4o-mini-2024-07-18 | 50.00 (-0.00, +0.00) | 50.00 (-0.00, +0.00) | |
|
| [t-tech/T-lite-it-1.0](https://huggingface.co/t-tech/T-lite-it-1.0) | 34.80 (-1.98, +2.38) | 26.99 (-1.74, +2.67) | |
|
| deepvk/plato-9b | 31.81 (-1.92, +1.90) | 24.25 (-1.71, +1.84) | |
|
| [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) | 20.84 (-1.99, +1.67) | 17.70 (-1.63, +1.68) | |
|
| [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it) | 12.98 (-1.36, +1.57) | 12.97 (-1.46, +1.69) | |
|
| [IlyaGusev/saiga_gemma2_9b](https://huggingface.co/IlyaGusev/saiga_gemma2_9b) | 9.72 (-1.34, +1.50) | 10.64 (-1.40, +1.78) | |
|
|
|
|
|
## Citation |
|
|
|
Both authors contribute equally, order is alphabetical. |
|
|
|
``` |
|
@misc{deepvk2024plato-9b, |
|
title={plato-9b}, |
|
author={Eliseev, Anton and Semin, Kirill}, |
|
url={https://huggingface.co/deepvk/plato-9b}, |
|
publisher={Hugging Face} |
|
year={2025}, |
|
} |
|
``` |
|
|