File size: 4,327 Bytes
6712da4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: cc-by-4.0
language:
- en
pipeline_tag: text-generation
---

# Defog SQLCoder
**Updated on Nov 14 to reflect benchmarks for SQLCoder-34B**

Defog's SQLCoder is a state-of-the-art LLM for converting natural language questions to SQL queries.

[Interactive Demo](https://defog.ai/sqlcoder-demo/) | [🤗 HF Repo](https://huggingface.co/defog/sqlcoder-34b-alpha) | [♾️ Colab](https://colab.research.google.com/drive/1z4rmOEiFkxkMiecAWeTUlPl0OmKgfEu7?usp=sharing) | [🐦 Twitter](https://twitter.com/defogdata)

## TL;DR
SQLCoder-34B is a 34B parameter model that outperforms `gpt-4` and `gpt-4-turbo` for natural language to SQL generation tasks on our [sql-eval](https://github.com/defog-ai/sql-eval) framework, and significantly outperforms all popular open-source models.

SQLCoder-34B is fine-tuned on a base CodeLlama model.

## Results on novel datasets not seen in training
| model   | perc_correct |
|-|-|
| defog-sqlcoder-34b    | 84.0 |
| gpt4-turbo-2023-11-09 | 82.5 |
| gpt4-2023-11-09       | 82.5 |
| defog-sqlcoder2       | 77.5 |
| gpt4-2023-08-28       | 74.0 |
| defog-sqlcoder-7b     | 71.0 |
| gpt-3.5-2023-10-04    | 66.0 |
| claude-2              | 64.5 |
| gpt-3.5-2023-08-28    | 61.0 |
| claude_instant_1      | 61.0 |
| text-davinci-003      | 52.5 |

![image](https://github.com/defog-ai/sqlcoder/assets/5008293/caed3423-8e86-4952-9da1-1a5e016a4696)


## License
The code in this repo (what little there is of it) is Apache-2 licensed. The model weights have a `CC BY-SA 4.0` license. The TL;DR is that you can use and modify the model for any purpose – including commercial use. However, if you modify the weights (for example, by fine-tuning), you must open-source your modified weights under the same license terms.

## Training
Defog was trained on more than 20,000 human-curated questions. These questions were based on 10 different schemas. None of the schemas in the training data were included in our evaluation framework. 

You can read more about our [training approach](https://defog.ai/blog/open-sourcing-sqlcoder2-7b/) and [evaluation framework](https://defog.ai/blog/open-sourcing-sqleval/).

## Results by question category
We classified each generated question into one of 5 categories. The table displays the percentage of questions answered correctly by each model, broken down by category.
|                | date | group_by | order_by | ratio | join | where |
| -------------- | ---- | -------- | -------- | ----- | ---- | ----- |
| sqlcoder-34b   | 80   | 94.3     | 88.6     | 74.3  | 82.9 | 82.9  |
| gpt-4          | 68   | 94.3     | 85.7     | 77.1  | 85.7 | 80    |
| sqlcoder2-15b  | 76   | 80       | 77.1     | 60    | 77.1 | 77.1  |
| sqlcoder-7b    | 64   | 82.9     | 74.3     | 54.3  | 74.3 | 74.3  |
| gpt-3.5        | 68   | 77.1     | 68.6     | 37.1  | 71.4 | 74.3  |
| claude-2       | 52   | 71.4     | 74.3     | 57.1  | 65.7 | 62.9  |
| claude-instant | 48   | 71.4     | 74.3     | 45.7  | 62.9 | 60    |
| gpt-3          | 32   | 71.4     | 68.6     | 25.7  | 57.1 | 54.3  |

<img width="831" alt="image" src="https://github.com/defog-ai/sqlcoder/assets/5008293/79c5bdc8-373c-4abd-822e-e2c2569ed353">


## Using SQLCoder
You can use SQLCoder via the `transformers` library by downloading our model weights from the Hugging Face repo. We have added sample code for [inference](./inference.py) on a [sample database schema](./metadata.sql). 
```bash
python inference.py -q "Question about the sample database goes here"

# Sample question:
# Do we get more revenue from customers in New York compared to customers in San Francisco? Give me the total revenue for each city, and the difference between the two.
```

You can also use a demo on our website [here](https://defog.ai/sqlcoder-demo)

## Hardware Requirements
SQLCoder-34B has been tested on a 4xA10 GPU with `float16` weights. You can also load an 8-bit and 4-bit quantized version of the model on consumer GPUs with 20GB or more of memory – like RTX 4090, RTX 3090, and Apple M2 Pro, M2 Max, or M2 Ultra Chips with 20GB or more of memory.

## Todo

- [x] Open-source the v1 model weights
- [x] Train the model on more data, with higher data variance
- [ ] Tune the model further with Reward Modelling and RLHF
- [ ] Pretrain a model from scratch that specializes in SQL analysis