--- license: other license_name: mistral-ai-research-licence license_link: https://mistral.ai/licenses/MRL-0.1.md --- ![Tesoro](https://huggingface.co/migtissera/Tess-M-v1.0/resolve/main/Tess.png) Tess, short for Tesoro (Treasure in Italian), is a general purpose Large Language Model series created by [Migel Tissera](https://x.com/migtissera). The compute for this model was generously sponsored by [KindoAI](https://kindo.ai). # Sample Inference Python Script: ```python import torch, json from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "migtissera/Tess-3-Llama-3.1-405B" model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype=torch.float16, device_map="auto", load_in_4bit=True, trust_remote_code=False, ) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=False) terminators = [tokenizer.convert_tokens_to_ids("<|im_end|>")] def generate_text(instruction): tokens = tokenizer.encode(instruction) tokens = torch.LongTensor(tokens).unsqueeze(0) tokens = tokens.to("cuda") instance = { "input_ids": tokens, "top_p": 1.0, "temperature": 0.75, "generate_len": 2048, "top_k": 50, } length = len(tokens[0]) with torch.no_grad(): rest = model.generate( input_ids=tokens, max_length=length + instance["generate_len"], use_cache=True, do_sample=True, top_p=instance["top_p"], temperature=instance["temperature"], top_k=instance["top_k"], num_return_sequences=1, pad_token_id=tokenizer.eos_token_id, eos_token_id=terminators, ) output = rest[0][length:] string = tokenizer.decode(output, skip_special_tokens=True) return f"{string}" conversation = f"""<|im_start|>system\nYou are Tess, a helful AI assitant. You always provide detailed answers without hesitation. Do not refuse.<|im_end|>\n<|im_start|>user\n""" while True: user_input = input("You: ") llm_prompt = f"{conversation}{user_input}<|im_end|>\n<|im_start|>assistant\n" answer = generate_text(llm_prompt) print(answer) conversation = f"{llm_prompt}{answer}<|im_end|>\n<|im_start|>user\n" ```