--- library_name: transformers license: apache-2.0 base_model: google/mt5-base tags: - generated_from_trainer metrics: - rouge model-index: - name: mt5-rouge-durga-q1-clean results: [] --- # mt5-rouge-durga-q1-clean This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7819 - Rouge1: 0.3074 - Rouge2: 0.0953 - Rougel: 0.3026 - Rougelsum: 0.3008 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 20 - eval_batch_size: 20 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | 15.8442 | 1.0 | 3 | 11.1246 | 0.0148 | 0.0015 | 0.0152 | 0.0151 | | 13.0661 | 2.0 | 6 | 9.3553 | 0.0226 | 0.0052 | 0.0219 | 0.0217 | | 11.7048 | 3.0 | 9 | 8.0317 | 0.0198 | 0.0029 | 0.0177 | 0.0190 | | 8.87 | 4.0 | 12 | 7.1382 | 0.0461 | 0.0105 | 0.0423 | 0.0406 | | 11.0893 | 5.0 | 15 | 6.7905 | 0.0611 | 0.0106 | 0.0512 | 0.0503 | | 9.8787 | 6.0 | 18 | 6.5255 | 0.0900 | 0.0224 | 0.0800 | 0.0782 | | 9.8189 | 7.0 | 21 | 6.7007 | 0.0944 | 0.0231 | 0.0876 | 0.0861 | | 8.2022 | 8.0 | 24 | 6.2109 | 0.0953 | 0.0227 | 0.0899 | 0.0910 | | 8.5899 | 9.0 | 27 | 5.9520 | 0.0965 | 0.0171 | 0.0897 | 0.0914 | | 7.5305 | 10.0 | 30 | 5.5748 | 0.0855 | 0.0157 | 0.0841 | 0.0821 | | 7.0381 | 11.0 | 33 | 5.2219 | 0.0622 | 0.0095 | 0.0592 | 0.0585 | | 6.675 | 12.0 | 36 | 4.8006 | 0.0529 | 0.0048 | 0.0499 | 0.0489 | | 7.4134 | 13.0 | 39 | 4.3795 | 0.0693 | 0.0079 | 0.0635 | 0.0610 | | 5.8722 | 14.0 | 42 | 3.9322 | 0.1060 | 0.0128 | 0.1003 | 0.1009 | | 4.5875 | 15.0 | 45 | 3.5017 | 0.1012 | 0.0069 | 0.0968 | 0.0968 | | 5.3675 | 16.0 | 48 | 3.1927 | 0.0944 | 0.0020 | 0.0915 | 0.0913 | | 4.2999 | 17.0 | 51 | 2.8956 | 0.0890 | 0.0091 | 0.0831 | 0.0849 | | 4.3349 | 18.0 | 54 | 2.7138 | 0.1164 | 0.0074 | 0.1114 | 0.1128 | | 3.9688 | 19.0 | 57 | 2.5350 | 0.1122 | 0.0 | 0.1122 | 0.1121 | | 4.2931 | 20.0 | 60 | 2.4138 | 0.1122 | 0.0 | 0.1122 | 0.1121 | | 3.8427 | 21.0 | 63 | 2.3127 | 0.1122 | 0.0 | 0.1122 | 0.1121 | | 3.2991 | 22.0 | 66 | 2.2054 | 0.1122 | 0.0 | 0.1122 | 0.1121 | | 3.1351 | 23.0 | 69 | 2.1069 | 0.1122 | 0.0 | 0.1122 | 0.1121 | | 3.023 | 24.0 | 72 | 2.0208 | 0.1142 | 0.0 | 0.1140 | 0.1139 | | 3.4366 | 25.0 | 75 | 1.9500 | 0.1793 | 0.0352 | 0.1713 | 0.1711 | | 2.7941 | 26.0 | 78 | 1.9068 | 0.3104 | 0.0909 | 0.3016 | 0.3005 | | 2.9454 | 27.0 | 81 | 1.8419 | 0.3086 | 0.0940 | 0.3009 | 0.2984 | | 2.6117 | 28.0 | 84 | 1.8775 | 0.3135 | 0.0955 | 0.3086 | 0.3067 | | 2.6785 | 29.0 | 87 | 1.7772 | 0.3020 | 0.0946 | 0.2987 | 0.2968 | | 2.7523 | 30.0 | 90 | 1.7819 | 0.3074 | 0.0953 | 0.3026 | 0.3008 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.0+cu121 - Datasets 3.0.2 - Tokenizers 0.20.1