devasheeshG
commited on
Commit
•
0838193
1
Parent(s):
9c5bcaf
Delete __init__.py
Browse files- __init__.py +0 -113
__init__.py
DELETED
@@ -1,113 +0,0 @@
|
|
1 |
-
from transformers import (
|
2 |
-
WhisperForConditionalGeneration, WhisperProcessor, WhisperConfig
|
3 |
-
)
|
4 |
-
import torch
|
5 |
-
import ffmpeg
|
6 |
-
import torch
|
7 |
-
import torch.nn.functional as F
|
8 |
-
import numpy as np
|
9 |
-
import os
|
10 |
-
|
11 |
-
# load_audio and pad_or_trim functions
|
12 |
-
SAMPLE_RATE = 16000
|
13 |
-
CHUNK_LENGTH = 30 # 30-second chunks
|
14 |
-
N_SAMPLES = CHUNK_LENGTH * SAMPLE_RATE # 480000 samples in a 30-second chunk
|
15 |
-
|
16 |
-
class Model:
|
17 |
-
def __init__(self,
|
18 |
-
model_name_or_path: str,
|
19 |
-
cuda_visible_device: str = "0",
|
20 |
-
device: str = 'cuda' # torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
21 |
-
):
|
22 |
-
|
23 |
-
os.environ["CUDA_VISIBLE_DEVICES"] = cuda_visible_device
|
24 |
-
self.DEVICE = device
|
25 |
-
|
26 |
-
self.processor = WhisperProcessor.from_pretrained(model_name_or_path)
|
27 |
-
self.tokenizer = self.processor.tokenizer
|
28 |
-
|
29 |
-
self.config = WhisperConfig.from_pretrained(model_name_or_path)
|
30 |
-
|
31 |
-
self.model = WhisperForConditionalGeneration(
|
32 |
-
config=self.config
|
33 |
-
).from_pretrained(
|
34 |
-
pretrained_model_name_or_path = model_name_or_path,
|
35 |
-
torch_dtype = self.config.torch_dtype,
|
36 |
-
# device_map=DEVICE, # 'balanced', 'balanced_low_0', 'sequential', 'cuda', 'cpu'
|
37 |
-
low_cpu_mem_usage = True,
|
38 |
-
)
|
39 |
-
|
40 |
-
# Move model to GPU
|
41 |
-
if self.model.device.type != self.DEVICE:
|
42 |
-
print(f'Moving model to {self.DEVICE}')
|
43 |
-
self.model = self.model.to(self.DEVICE)
|
44 |
-
self.model.eval()
|
45 |
-
|
46 |
-
else:
|
47 |
-
print(f'Model is already on {self.DEVICE}')
|
48 |
-
self.model.eval()
|
49 |
-
|
50 |
-
print('dtype of model acc to config: ', self.config.torch_dtype)
|
51 |
-
print('dtype of loaded model: ', self.model.dtype)
|
52 |
-
|
53 |
-
|
54 |
-
# audio = whisper.load_audio('test.wav')
|
55 |
-
def load_audio(self, file: str, sr: int = SAMPLE_RATE, start_time: int = 0, dtype=np.float16):
|
56 |
-
try:
|
57 |
-
# This launches a subprocess to decode audio while down-mixing and resampling as necessary.
|
58 |
-
# Requires the ffmpeg CLI and `ffmpeg-python` package to be installed.
|
59 |
-
out, _ = (
|
60 |
-
ffmpeg.input(file, ss=start_time, threads=0)
|
61 |
-
.output("-", format="s16le", acodec="pcm_s16le", ac=1, ar=sr)
|
62 |
-
.run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True)
|
63 |
-
)
|
64 |
-
except ffmpeg.Error as e:
|
65 |
-
raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e
|
66 |
-
|
67 |
-
# return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0
|
68 |
-
return np.frombuffer(out, np.int16).flatten().astype(dtype) / 32768.0
|
69 |
-
|
70 |
-
|
71 |
-
# audio = whisper.pad_or_trim(audio)
|
72 |
-
def _pad_or_trim(self, array, length: int = N_SAMPLES, *, axis: int = -1):
|
73 |
-
"""
|
74 |
-
Pad or trim the audio array to N_SAMPLES, as expected by the encoder.
|
75 |
-
"""
|
76 |
-
if torch.is_tensor(array):
|
77 |
-
if array.shape[axis] > length:
|
78 |
-
array = array.index_select(
|
79 |
-
dim=axis, index=torch.arange(length, device=array.device)
|
80 |
-
)
|
81 |
-
|
82 |
-
if array.shape[axis] < length:
|
83 |
-
pad_widths = [(0, 0)] * array.ndim
|
84 |
-
pad_widths[axis] = (0, length - array.shape[axis])
|
85 |
-
array = F.pad(array, [pad for sizes in pad_widths[::-1] for pad in sizes])
|
86 |
-
else:
|
87 |
-
if array.shape[axis] > length:
|
88 |
-
array = array.take(indices=range(length), axis=axis)
|
89 |
-
|
90 |
-
if array.shape[axis] < length:
|
91 |
-
pad_widths = [(0, 0)] * array.ndim
|
92 |
-
pad_widths[axis] = (0, length - array.shape[axis])
|
93 |
-
array = np.pad(array, pad_widths)
|
94 |
-
|
95 |
-
return array
|
96 |
-
|
97 |
-
def transcribe(self, audio: np.ndarray, language: str = "english"):
|
98 |
-
# audio = load_audio(audio)
|
99 |
-
audio = self._pad_or_trim(audio)
|
100 |
-
input_features = self.processor(audio, sampling_rate=SAMPLE_RATE, return_tensors="pt").input_features.half().to(self.DEVICE)
|
101 |
-
with torch.no_grad():
|
102 |
-
predicted_ids = self.model.generate(
|
103 |
-
input_features,
|
104 |
-
num_beams = 1,
|
105 |
-
language=language,
|
106 |
-
task="transcribe",
|
107 |
-
use_cache=True,
|
108 |
-
is_multilingual=True,
|
109 |
-
return_timestamps=True,
|
110 |
-
)
|
111 |
-
|
112 |
-
transcription = self.tokenizer.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
113 |
-
return transcription.strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|