File size: 6,178 Bytes
24997e8 0dd6b83 f248fdd fbc6b69 f248fdd fbc6b69 f248fdd 24997e8 803f441 896ac08 803f441 fbc6b69 803f441 4dcd187 803f441 896ac08 803f441 896ac08 fbc6b69 803f441 94be451 fbc6b69 803f441 fbc6b69 803f441 fbc6b69 803f441 fbc6b69 a97af25 803f441 1e09b45 803f441 1e09b45 803f441 0dd6b83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
---
license: apache-2.0
pipeline_tag: automatic-speech-recognition
tags:
- pytorch
- audio
- speech
- automatic-speech-recognition
- whisper
- wav2vec2
model-index:
- name: whisper_medium_fp16_transformers
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
type: common_voice
name: Common Voice (14.0) (Hindi) (test.tsv -> 2557 samples used)
metrics:
- type: wer
value: 1.7
name: Test WER
description: Word Error Rate
- type: mer
value: 1.1
name: Test MER
description: Match Error Rate
- type: wil
value: 3,584
name: Test WIL
description: Word Information Lost
- type: wip
value: 112
name: Test WIP
description: Word Information Preserved
- type: cer
value: 1.7
name: Test CER
description: Character Error Rate
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
type: common_voice
name: Common Voice (14.0) (English) (test.tsv -> 2557 samples used)
metrics:
- type: wer
value: -
name: Test WER
description: Word Error Rate
- type: mer
value: -
name: Test MER
description: Match Error Rate
- type: wil
value: -
name: Test WIL
description: Word Information Lost
- type: wip
value: -
name: Test WIP
description: Word Information Preserved
- type: cer
value: -
name: Test CER
description: Character Error Rate
widget:
- example_title: Librispeech sample 1
src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
- example_title: Librispeech sample 2
src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
language:
- en
- zh
- de
- es
- ru
- ko
- fr
- ja
- pt
- tr
- pl
- ca
- nl
- ar
- sv
- it
- id
- hi
- fi
- vi
- he
- uk
- el
- ms
- cs
- ro
- da
- hu
- ta
- 'no'
- th
- ur
- hr
- bg
- lt
- la
- mi
- ml
- cy
- sk
- te
- fa
- lv
- bn
- sr
- az
- sl
- kn
- et
- mk
- br
- eu
- is
- hy
- ne
- mn
- bs
- kk
- sq
- sw
- gl
- mr
- pa
- si
- km
- sn
- yo
- so
- af
- oc
- ka
- be
- tg
- sd
- gu
- am
- yi
- lo
- uz
- fo
- ht
- ps
- tk
- nn
- mt
- sa
- lb
- my
- bo
- tl
- mg
- as
- tt
- haw
- ln
- ha
- ba
- jw
- su
---
## Versions:
- CUDA: 12.1
- cuDNN Version: 8.9.2.26_1.0-1_amd64
* tensorflow Version: 2.12.0
* torch Version: 2.1.0.dev20230606+cu12135
* transformers Version: 4.30.2
* accelerate Version: 0.20.3
## Model Benchmarks:
- RAM: 2.8 GB (Original_Model: 5.5GB)
- VRAM: 1812 MB (Original_Model: 6GB)
- test.wav: 23 s (Multilingual Speech i.e. English+Hindi)
- **Time in seconds for Processing by each device**
| Device Name | float32 (Original) | float16 | CudaCores | TensorCores |
| ----------------- | -------------------- | ------- | --------- | ----------- |
| 3060 | 1.7 | 1.1 | 3,584 | 112 |
| 1660 Super | OOM | 3.3 | 1,408 | - |
| Collab (Tesla T4) | 2.8 | 2.2 | 2,560 | 320 |
| Collab (CPU) | 35 | - | - | - |
| M1 (CPU) | - | - | - | - |
| M1 (GPU -> 'mps') | - | - | - | - |
- **NOTE: TensorCores are efficient in mixed-precision calculations**
- **CPU -> torch.float16 not supported on CPU (AMD Ryzen 5 3600 or Collab GPU)**
- Punchuation: True
## Model Error Benchmarks:
- **WER: Word Error Rate**
- **MER: Match Error Rate**
- **WIL: Word Information Lost**
- **WIP: Word Information Preserved**
- **CER: Character Error Rate**
### Hindi (test.tsv -> 2557 samples used) [Common Voice 14.0](https://commonvoice.mozilla.org/en/datasets)
| | WER | MER | WIL | WIP | CER |
| ----------------- | -------------------- | ------- | --------- | ----------- | --- |
| Original_Model | - | - | - | - | - |
| This_Model | - | - | - | - | - |
### English
| | WER | MER | WIL | WIP | CER |
| ----------------- | -------------------- | ------- | --------- | ----------- | --- |
| Original_Model | - | - | - | - | - |
| This_Model | - | - | - | - | - |
- **'jiwer' library is used for calculations**
## Code:
- ### [$\textbf{Will be soon Uploaded on Github}$ ](https://github.com/devasheeshG)
## Usage
A file ``__init__.py`` is contained inside this repo which contains all the code to use this model.
Firstly, clone this repo and place all the files inside a folder.
### Make sure you have git-lfs installed (https://git-lfs.com)
```bash
git lfs install
git clone https://huggingface.co/devasheeshG/whisper_medium_fp16_transformers
```
**Please try in jupyter notebook**
```python
# Import the Model
from whisper_medium_fp16_transformers import Model
```
```python
# Initilise the model
model = Model(
model_name_or_path='whisper_medium_fp16_transformers',
cuda_visible_device="0",
device='cuda',
)
```
```python
# Load Audio
audio = model.load_audio('whisper_medium_fp16_transformers/test.wav')
```
```python
# Transcribe (First transcription takes time)
model.transcribe(audio)
``` |