devasheeshG's picture
added benchmarks
fbc6b69
raw
history blame
4.6 kB
from transformers import (
WhisperForConditionalGeneration, WhisperProcessor, WhisperConfig
)
import torch
import ffmpeg
import torch
import torch.nn.functional as F
import numpy as np
import os
# load_audio and pad_or_trim functions
SAMPLE_RATE = 16000
CHUNK_LENGTH = 30 # 30-second chunks
N_SAMPLES = CHUNK_LENGTH * SAMPLE_RATE # 480000 samples in a 30-second chunk
class Model:
def __init__(self,
model_name_or_path: str,
cuda_visible_device: str = "0",
device: str = 'cuda' # torch.device("cuda" if torch.cuda.is_available() else "cpu")
):
os.environ["CUDA_VISIBLE_DEVICES"] = cuda_visible_device
self.DEVICE = device
self.processor = WhisperProcessor.from_pretrained(model_name_or_path)
self.tokenizer = self.processor.tokenizer
self.config = WhisperConfig.from_pretrained(model_name_or_path)
self.model = WhisperForConditionalGeneration(
config=self.config
).from_pretrained(
pretrained_model_name_or_path = model_name_or_path,
torch_dtype = self.config.torch_dtype,
# device_map=DEVICE, # 'balanced', 'balanced_low_0', 'sequential', 'cuda', 'cpu'
low_cpu_mem_usage = True,
)
# Move model to GPU
if self.model.device.type != self.DEVICE:
print(f'Moving model to {self.DEVICE}')
self.model = self.model.to(self.DEVICE)
self.model.eval()
else:
print(f'Model is already on {self.DEVICE}')
self.model.eval()
print('dtype of model acc to config: ', self.config.torch_dtype)
print('dtype of loaded model: ', self.model.dtype)
# audio = whisper.load_audio('test.wav')
def load_audio(self, file: str, sr: int = SAMPLE_RATE, start_time: int = 0, dtype=np.float16):
try:
# This launches a subprocess to decode audio while down-mixing and resampling as necessary.
# Requires the ffmpeg CLI and `ffmpeg-python` package to be installed.
out, _ = (
ffmpeg.input(file, ss=start_time, threads=0)
.output("-", format="s16le", acodec="pcm_s16le", ac=1, ar=sr)
.run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True)
)
except ffmpeg.Error as e:
raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e
# return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0
return np.frombuffer(out, np.int16).flatten().astype(dtype) / 32768.0
# audio = whisper.pad_or_trim(audio)
def _pad_or_trim(self, array, length: int = N_SAMPLES, *, axis: int = -1):
"""
Pad or trim the audio array to N_SAMPLES, as expected by the encoder.
"""
if torch.is_tensor(array):
if array.shape[axis] > length:
array = array.index_select(
dim=axis, index=torch.arange(length, device=array.device)
)
if array.shape[axis] < length:
pad_widths = [(0, 0)] * array.ndim
pad_widths[axis] = (0, length - array.shape[axis])
array = F.pad(array, [pad for sizes in pad_widths[::-1] for pad in sizes])
else:
if array.shape[axis] > length:
array = array.take(indices=range(length), axis=axis)
if array.shape[axis] < length:
pad_widths = [(0, 0)] * array.ndim
pad_widths[axis] = (0, length - array.shape[axis])
array = np.pad(array, pad_widths)
return array
def transcribe(self, audio: np.ndarray, language: str = "english"):
# audio = load_audio(audio)
audio = self._pad_or_trim(audio)
input_features = self.processor(audio, sampling_rate=SAMPLE_RATE, return_tensors="pt").input_features.half().to(self.DEVICE)
with torch.no_grad():
predicted_ids = self.model.generate(
input_features,
num_beams = 1,
language=language,
task="transcribe",
use_cache=True,
is_multilingual=True,
return_timestamps=True,
)
transcription = self.tokenizer.batch_decode(predicted_ids, skip_special_tokens=True)[0]
return transcription.strip()