dfsandovalp01 commited on
Commit
1aa2970
·
verified ·
1 Parent(s): 33bd665

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: somosnlp-hackathon-2022/paraphrase-spanish-distilroberta
3
+ library_name: sentence-transformers
4
+ pipeline_tag: sentence-similarity
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:44147
11
+ - loss:SoftmaxLoss
12
+ widget:
13
+ - source_sentence: Componentes y Equipos para Distribución y Sistemas de Acondicionamiento
14
+ Instalaciones de tubos y entubamientos
15
+ sentences:
16
+ - Frijoles verdes congelados Fríjoles congelados
17
+ - 'Brida reductora para tubos de plástico cpvc Bridas reductoras para tubos '
18
+ - Naranja hamlin orgánica en lata o en frasco Naranjas orgánicas en lata o en frasco
19
+ - source_sentence: Componentes y Suministros de Manufactura Ferretería
20
+ sentences:
21
+ - Terfenadina Antihistamínicos (bloqueadores H1)
22
+ - Tomates verde Tomates
23
+ - Ciruela sloe seca Ciruelas secas
24
+ - source_sentence: Servicios Públicos y Servicios Relacionados con el Sector Público
25
+ Servicios públicos
26
+ sentences:
27
+ - Chalote pikant orgánico Chalotes orgánicos
28
+ - Rosal cortado seco ciciolina Rosas cortadas secas rosados
29
+ - Rosal vivo peach sherbet Rosales vivos anaranjados
30
+ - source_sentence: Maquinaria y Accesorios para Manufactura y Procesamiento Industrial
31
+ Maquinaria y accesorios para cortar metales
32
+ sentences:
33
+ - Pimentón peperoncini seco Pimientos Secos
34
+ - Ciruela diamante rojo congelada orgánica Ciruelas orgánicas congeladas
35
+ - Máquinas para dar formas al metal en la superficie Máquinas perforadoras de metales
36
+ - source_sentence: Alimentos, Bebidas y Tabaco Vegetales orgánicos secos
37
+ sentences:
38
+ - Coliflo rdok elgon orgánica seca Coliflores orgánicas secas
39
+ - Arame orgánica seca Vegetales marinos orgánicos secos
40
+ - Cereza dark guines Cerezas
41
+ ---
42
+
43
+ # SentenceTransformer based on somosnlp-hackathon-2022/paraphrase-spanish-distilroberta
44
+
45
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [somosnlp-hackathon-2022/paraphrase-spanish-distilroberta](https://huggingface.co/somosnlp-hackathon-2022/paraphrase-spanish-distilroberta). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
46
+
47
+ ## Model Details
48
+
49
+ ### Model Description
50
+ - **Model Type:** Sentence Transformer
51
+ - **Base model:** [somosnlp-hackathon-2022/paraphrase-spanish-distilroberta](https://huggingface.co/somosnlp-hackathon-2022/paraphrase-spanish-distilroberta) <!-- at revision 5ed9fdaabd705e7bd88029a3f08ce7397a666d6a -->
52
+ - **Maximum Sequence Length:** 256 tokens
53
+ - **Output Dimensionality:** 768 tokens
54
+ - **Similarity Function:** Cosine Similarity
55
+ <!-- - **Training Dataset:** Unknown -->
56
+ <!-- - **Language:** Unknown -->
57
+ <!-- - **License:** Unknown -->
58
+
59
+ ### Model Sources
60
+
61
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
62
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
63
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
64
+
65
+ ### Full Model Architecture
66
+
67
+ ```
68
+ SentenceTransformer(
69
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel
70
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
71
+ )
72
+ ```
73
+
74
+ ## Usage
75
+
76
+ ### Direct Usage (Sentence Transformers)
77
+
78
+ First install the Sentence Transformers library:
79
+
80
+ ```bash
81
+ pip install -U sentence-transformers
82
+ ```
83
+
84
+ Then you can load this model and run inference.
85
+ ```python
86
+ from sentence_transformers import SentenceTransformer
87
+
88
+ # Download from the 🤗 Hub
89
+ model = SentenceTransformer("dfsandovalp01/paraphrase-spanish-distilroberta-MDD-pucCO-V2")
90
+ # Run inference
91
+ sentences = [
92
+ 'Alimentos, Bebidas y Tabaco Vegetales orgánicos secos',
93
+ 'Coliflo rdok elgon orgánica seca Coliflores orgánicas secas',
94
+ 'Arame orgánica seca Vegetales marinos orgánicos secos',
95
+ ]
96
+ embeddings = model.encode(sentences)
97
+ print(embeddings.shape)
98
+ # [3, 768]
99
+
100
+ # Get the similarity scores for the embeddings
101
+ similarities = model.similarity(embeddings, embeddings)
102
+ print(similarities.shape)
103
+ # [3, 3]
104
+ ```
105
+
106
+ <!--
107
+ ### Direct Usage (Transformers)
108
+
109
+ <details><summary>Click to see the direct usage in Transformers</summary>
110
+
111
+ </details>
112
+ -->
113
+
114
+ <!--
115
+ ### Downstream Usage (Sentence Transformers)
116
+
117
+ You can finetune this model on your own dataset.
118
+
119
+ <details><summary>Click to expand</summary>
120
+
121
+ </details>
122
+ -->
123
+
124
+ <!--
125
+ ### Out-of-Scope Use
126
+
127
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
128
+ -->
129
+
130
+ <!--
131
+ ## Bias, Risks and Limitations
132
+
133
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
134
+ -->
135
+
136
+ <!--
137
+ ### Recommendations
138
+
139
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
140
+ -->
141
+
142
+ ## Training Details
143
+
144
+ ### Training Dataset
145
+
146
+ #### Unnamed Dataset
147
+
148
+
149
+ * Size: 44,147 training samples
150
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
151
+ * Approximate statistics based on the first 1000 samples:
152
+ | | sentence_0 | sentence_1 | label |
153
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------|
154
+ | type | string | string | int |
155
+ | details | <ul><li>min: 5 tokens</li><li>mean: 15.49 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 13.39 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>0: ~48.80%</li><li>1: ~8.30%</li><li>2: ~42.90%</li></ul> |
156
+ * Samples:
157
+ | sentence_0 | sentence_1 | label |
158
+ |:-----------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|:---------------|
159
+ | <code>Maquinaria y Accesorios para Generación y Distribución de Energía Generación de energía</code> | <code>Amortiguador de veleta Equipo de cribado o estructuras de tubo de escape</code> | <code>0</code> |
160
+ | <code>Alimentos, Bebidas y Tabaco Fruta orgánica en lata o en frasco</code> | <code>Mangos mayaguez orgánico en lata o en frasco Mangos orgánicos en lata o en frasco</code> | <code>0</code> |
161
+ | <code>Alimentos, Bebidas y Tabaco Fruta orgánica congelada</code> | <code>Bolsa para transportar quimioterapia Equipo y suministros de quimioterapia</code> | <code>1</code> |
162
+ * Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
163
+
164
+ ### Training Hyperparameters
165
+ #### Non-Default Hyperparameters
166
+
167
+ - `per_device_train_batch_size`: 16
168
+ - `per_device_eval_batch_size`: 16
169
+ - `num_train_epochs`: 1
170
+ - `multi_dataset_batch_sampler`: round_robin
171
+
172
+ #### All Hyperparameters
173
+ <details><summary>Click to expand</summary>
174
+
175
+ - `overwrite_output_dir`: False
176
+ - `do_predict`: False
177
+ - `eval_strategy`: no
178
+ - `prediction_loss_only`: True
179
+ - `per_device_train_batch_size`: 16
180
+ - `per_device_eval_batch_size`: 16
181
+ - `per_gpu_train_batch_size`: None
182
+ - `per_gpu_eval_batch_size`: None
183
+ - `gradient_accumulation_steps`: 1
184
+ - `eval_accumulation_steps`: None
185
+ - `torch_empty_cache_steps`: None
186
+ - `learning_rate`: 5e-05
187
+ - `weight_decay`: 0.0
188
+ - `adam_beta1`: 0.9
189
+ - `adam_beta2`: 0.999
190
+ - `adam_epsilon`: 1e-08
191
+ - `max_grad_norm`: 1
192
+ - `num_train_epochs`: 1
193
+ - `max_steps`: -1
194
+ - `lr_scheduler_type`: linear
195
+ - `lr_scheduler_kwargs`: {}
196
+ - `warmup_ratio`: 0.0
197
+ - `warmup_steps`: 0
198
+ - `log_level`: passive
199
+ - `log_level_replica`: warning
200
+ - `log_on_each_node`: True
201
+ - `logging_nan_inf_filter`: True
202
+ - `save_safetensors`: True
203
+ - `save_on_each_node`: False
204
+ - `save_only_model`: False
205
+ - `restore_callback_states_from_checkpoint`: False
206
+ - `no_cuda`: False
207
+ - `use_cpu`: False
208
+ - `use_mps_device`: False
209
+ - `seed`: 42
210
+ - `data_seed`: None
211
+ - `jit_mode_eval`: False
212
+ - `use_ipex`: False
213
+ - `bf16`: False
214
+ - `fp16`: False
215
+ - `fp16_opt_level`: O1
216
+ - `half_precision_backend`: auto
217
+ - `bf16_full_eval`: False
218
+ - `fp16_full_eval`: False
219
+ - `tf32`: None
220
+ - `local_rank`: 0
221
+ - `ddp_backend`: None
222
+ - `tpu_num_cores`: None
223
+ - `tpu_metrics_debug`: False
224
+ - `debug`: []
225
+ - `dataloader_drop_last`: False
226
+ - `dataloader_num_workers`: 0
227
+ - `dataloader_prefetch_factor`: None
228
+ - `past_index`: -1
229
+ - `disable_tqdm`: False
230
+ - `remove_unused_columns`: True
231
+ - `label_names`: None
232
+ - `load_best_model_at_end`: False
233
+ - `ignore_data_skip`: False
234
+ - `fsdp`: []
235
+ - `fsdp_min_num_params`: 0
236
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
237
+ - `fsdp_transformer_layer_cls_to_wrap`: None
238
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
239
+ - `deepspeed`: None
240
+ - `label_smoothing_factor`: 0.0
241
+ - `optim`: adamw_torch
242
+ - `optim_args`: None
243
+ - `adafactor`: False
244
+ - `group_by_length`: False
245
+ - `length_column_name`: length
246
+ - `ddp_find_unused_parameters`: None
247
+ - `ddp_bucket_cap_mb`: None
248
+ - `ddp_broadcast_buffers`: False
249
+ - `dataloader_pin_memory`: True
250
+ - `dataloader_persistent_workers`: False
251
+ - `skip_memory_metrics`: True
252
+ - `use_legacy_prediction_loop`: False
253
+ - `push_to_hub`: False
254
+ - `resume_from_checkpoint`: None
255
+ - `hub_model_id`: None
256
+ - `hub_strategy`: every_save
257
+ - `hub_private_repo`: False
258
+ - `hub_always_push`: False
259
+ - `gradient_checkpointing`: False
260
+ - `gradient_checkpointing_kwargs`: None
261
+ - `include_inputs_for_metrics`: False
262
+ - `eval_do_concat_batches`: True
263
+ - `fp16_backend`: auto
264
+ - `push_to_hub_model_id`: None
265
+ - `push_to_hub_organization`: None
266
+ - `mp_parameters`:
267
+ - `auto_find_batch_size`: False
268
+ - `full_determinism`: False
269
+ - `torchdynamo`: None
270
+ - `ray_scope`: last
271
+ - `ddp_timeout`: 1800
272
+ - `torch_compile`: False
273
+ - `torch_compile_backend`: None
274
+ - `torch_compile_mode`: None
275
+ - `dispatch_batches`: None
276
+ - `split_batches`: None
277
+ - `include_tokens_per_second`: False
278
+ - `include_num_input_tokens_seen`: False
279
+ - `neftune_noise_alpha`: None
280
+ - `optim_target_modules`: None
281
+ - `batch_eval_metrics`: False
282
+ - `eval_on_start`: False
283
+ - `eval_use_gather_object`: False
284
+ - `batch_sampler`: batch_sampler
285
+ - `multi_dataset_batch_sampler`: round_robin
286
+
287
+ </details>
288
+
289
+ ### Training Logs
290
+ | Epoch | Step | Training Loss |
291
+ |:------:|:----:|:-------------:|
292
+ | 0.1812 | 500 | 0.6649 |
293
+ | 0.3623 | 1000 | 0.4498 |
294
+ | 0.5435 | 1500 | 0.3788 |
295
+ | 0.7246 | 2000 | 0.3636 |
296
+ | 0.9058 | 2500 | 0.353 |
297
+ | 0.1812 | 500 | 0.3429 |
298
+ | 0.3623 | 1000 | 0.3254 |
299
+ | 0.5435 | 1500 | 0.3359 |
300
+ | 0.7246 | 2000 | 0.3209 |
301
+ | 0.9058 | 2500 | 0.3311 |
302
+
303
+
304
+ ### Framework Versions
305
+ - Python: 3.10.12
306
+ - Sentence Transformers: 3.1.0
307
+ - Transformers: 4.44.2
308
+ - PyTorch: 2.4.0+cu121
309
+ - Accelerate: 0.34.2
310
+ - Datasets: 3.0.0
311
+ - Tokenizers: 0.19.1
312
+
313
+ ## Citation
314
+
315
+ ### BibTeX
316
+
317
+ #### Sentence Transformers and SoftmaxLoss
318
+ ```bibtex
319
+ @inproceedings{reimers-2019-sentence-bert,
320
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
321
+ author = "Reimers, Nils and Gurevych, Iryna",
322
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
323
+ month = "11",
324
+ year = "2019",
325
+ publisher = "Association for Computational Linguistics",
326
+ url = "https://arxiv.org/abs/1908.10084",
327
+ }
328
+ ```
329
+
330
+ <!--
331
+ ## Glossary
332
+
333
+ *Clearly define terms in order to be accessible across audiences.*
334
+ -->
335
+
336
+ <!--
337
+ ## Model Card Authors
338
+
339
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
340
+ -->
341
+
342
+ <!--
343
+ ## Model Card Contact
344
+
345
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
346
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "hackathon-pln-es/paraphrase-spanish-distilroberta",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.44.2",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 50265
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.0",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ace98fc59b53ccfb8370dfe26a0ed3b0a1ae62a6d2367a705757de4515bccf5
3
+ size 498604904
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "4": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "errors": "replace",
50
+ "mask_token": "<mask>",
51
+ "max_length": 128,
52
+ "model_max_length": 256,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "<pad>",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "</s>",
58
+ "stride": 0,
59
+ "tokenizer_class": "RobertaTokenizer",
60
+ "trim_offsets": true,
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "<unk>"
64
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff