Update README.md
Browse files
README.md
CHANGED
@@ -21,26 +21,22 @@ base_model: meta-llama/Llama-2-7b-hf
|
|
21 |
|
22 |
This instruction model was built via parameter-efficient QLoRA finetuning of [Llama-2-7b](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the first 5k rows of [ehartford/dolphin](https://huggingface.co/datasets/ehartford/dolphin) and the first 5k rows of [garage-bAInd/Open-Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus). Finetuning was executed on 1x A100 (40 GB SXM) for roughly 2 hours on the [Lambda Labs](https://cloud.lambdalabs.com/instances) platform.
|
23 |
|
24 |
-
|
|
|
25 |
|
26 |
-
| Metric | Value
|
27 |
-
|
28 |
-
|
|
29 |
-
| ARC (25-shot) | 51.19
|
30 |
-
| HellaSwag (10-shot) | 78.92
|
31 |
-
|
|
32 |
-
|
|
|
|
|
|
|
|
33 |
|
34 |
We use the [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above, using the same version as Hugging Face's [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
|
35 |
|
36 |
-
## Helpful links
|
37 |
-
|
38 |
-
* Model license: coming
|
39 |
-
* Basic usage: coming
|
40 |
-
* Finetuning code: coming
|
41 |
-
* Loss curves: coming
|
42 |
-
* Runtime stats: coming
|
43 |
-
|
44 |
## Loss curve
|
45 |
|
46 |
![loss curve](https://raw.githubusercontent.com/daniel-furman/sft-demos/main/assets/sep_12_23_9_20_00_log_loss_curves_Llama-2-7b-instruct.png)
|
@@ -161,17 +157,3 @@ The following `bitsandbytes` quantization config was used during training:
|
|
161 |
## Framework versions
|
162 |
|
163 |
- PEFT 0.6.0.dev0
|
164 |
-
|
165 |
-
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
|
166 |
-
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_dfurman__llama-2-7b-instruct-peft)
|
167 |
-
|
168 |
-
| Metric | Value |
|
169 |
-
|-----------------------|---------------------------|
|
170 |
-
| Avg. | 44.5 |
|
171 |
-
| ARC (25-shot) | 51.19 |
|
172 |
-
| HellaSwag (10-shot) | 78.92 |
|
173 |
-
| MMLU (5-shot) | 46.63 |
|
174 |
-
| TruthfulQA (0-shot) | 48.5 |
|
175 |
-
| Winogrande (5-shot) | 74.43 |
|
176 |
-
| GSM8K (5-shot) | 5.99 |
|
177 |
-
| DROP (3-shot) | 5.82 |
|
|
|
21 |
|
22 |
This instruction model was built via parameter-efficient QLoRA finetuning of [Llama-2-7b](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the first 5k rows of [ehartford/dolphin](https://huggingface.co/datasets/ehartford/dolphin) and the first 5k rows of [garage-bAInd/Open-Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus). Finetuning was executed on 1x A100 (40 GB SXM) for roughly 2 hours on the [Lambda Labs](https://cloud.lambdalabs.com/instances) platform.
|
23 |
|
24 |
+
# Open LLM Leaderboard Evaluation Results
|
25 |
+
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_dfurman__llama-2-7b-instruct-peft)
|
26 |
|
27 |
+
| Metric | Value |
|
28 |
+
|-----------------------|---------------------------|
|
29 |
+
| Avg. | 44.5 |
|
30 |
+
| ARC (25-shot) | 51.19 |
|
31 |
+
| HellaSwag (10-shot) | 78.92 |
|
32 |
+
| MMLU (5-shot) | 46.63 |
|
33 |
+
| TruthfulQA (0-shot) | 48.5 |
|
34 |
+
| Winogrande (5-shot) | 74.43 |
|
35 |
+
| GSM8K (5-shot) | 5.99 |
|
36 |
+
| DROP (3-shot) | 5.82 |
|
37 |
|
38 |
We use the [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above, using the same version as Hugging Face's [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
## Loss curve
|
41 |
|
42 |
![loss curve](https://raw.githubusercontent.com/daniel-furman/sft-demos/main/assets/sep_12_23_9_20_00_log_loss_curves_Llama-2-7b-instruct.png)
|
|
|
157 |
## Framework versions
|
158 |
|
159 |
- PEFT 0.6.0.dev0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|