dhtocks commited on
Commit
d4e1eb5
·
verified ·
1 Parent(s): 2740c32

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +52 -175
README.md CHANGED
@@ -1,199 +1,76 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
 
9
 
10
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
 
 
 
 
 
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
 
 
 
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
 
45
 
46
- ### Downstream Use [optional]
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
 
 
49
 
50
- [More Information Needed]
 
 
 
 
 
 
 
51
 
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ license: cc-by-nc-4.0
4
+ datasets:
5
+ - allenai/nllb
6
+ - facebook/flores
7
+ language:
8
+ - ko
9
+ - en
10
+ metrics:
11
+ - chrf
12
+ pipeline_tag: translation
13
  ---
14
 
15
+ # NLLB-200 Distilled-350M_en2ko
16
 
17
+ The NLLB-200 model showed outstanding performance in translation task and contributed to solving problems with low-resource languages.
18
+ Despite their efforts, it is still hard to run 600M or more than 1B model for those who have not enough computing environment.
19
+ So I made much smaller model that expertized translaing English to Korean. you can also run it with cpu (No mixed-precision, No Quantization).
20
 
21
 
22
 
23
+ ## Model
24
 
25
+ - Model: model is based on NLLB-200 600M
26
+ - **Parameters: 350,537,728 (350M)**
27
+ - **Encoder layers: 12 -> 3**
28
+ - **Decoder layers: 12 -> 3**
29
+ - FFN dimension: 4096 (same)
30
+ - Embed dimension: 1024 (same)
31
+ - Vocab size: 256206 (same)
32
 
33
+ - Licnese: CC-BY-NC
34
 
35
+ ## Data
36
 
37
+ - Training Data: [NLLB dataset](https://huggingface.co/datasets/allenai/nllb)
38
+ - Evaluation Data: [Flores-200 dataset](https://huggingface.co/datasets/facebook/flores)
 
 
 
 
 
39
 
40
+ ## Metric
41
 
42
+ - CPU: Intel (R) Xeon(R) CPU @ 2.20GHz (16 cores)
43
+ - GPU: NVIDIA L4 24GB
44
 
 
 
 
45
 
 
46
 
47
+ | | #Params | chrF(++) | GPU Inference time (s) | CPU Inference time (s) |
48
+ | ---------------------- | ------- | -------- | ---------------------- | ---------------------- |
49
+ | NLLB-200 3.3B | 3.3B | 34.3 | 0.98 s | 4.65 s |
50
+ | NLLB-200 1.3B | 1.3B | 32.1 | 0.89 s | 2.46 s |
51
+ | NLLB-200 600M | 600M | 32 | 0.43 s | 1.52 s |
52
+ | NLLB-200 350M (*ours*) | 350M | 24.6 | 0.24 s | 1.43 s |
53
 
 
54
 
55
+ ## Usage
56
 
57
+ ```python
58
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
59
 
60
+ model = AutoModelForSeq2SeqLM.from_pretrained('dhtocks/nllb-200-distilled-350M_en-ko', forced_bos_token_id=256098)
61
+ tokenizer = AutoTokenizer.from_pretrained('dhtocks/nllb-200-distilled-350M_en-ko', src_lang='eng_Latn', tgt_lang='kor_Hang')
62
 
63
+ inputs = tokenizer('[YOUR_INPUT]', return_tensors="pt")
64
+ output = model.generate(**inputs)
65
+ print(tokenizer.decode(output[0]))
66
+ ```
67
 
68
+ ## Citation
69
+ ```bibtex
70
+ @misc{,
71
+ title={NLLB-200 distilled_350M_en-ko},
72
+ author={Saechan Oh},
73
+ year={2024}
74
+ }
75
+ ```
76