diaenra commited on
Commit
6c15d62
·
verified ·
1 Parent(s): 3087b41

End of training

Browse files
Files changed (2) hide show
  1. README.md +165 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: apache-2.0
4
+ base_model: Qwen/Qwen2.5-Math-7B-Instruct
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: 0f3e25f3-9370-47c0-bb1f-167b56131fd8
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
+
19
+ axolotl version: `0.4.1`
20
+ ```yaml
21
+ adapter: lora
22
+ base_model: Qwen/Qwen2.5-Math-7B-Instruct
23
+ bf16: auto
24
+ chat_template: llama3
25
+ dataset_prepared_path: null
26
+ datasets:
27
+ - data_files:
28
+ - f44a24a0bc5385f2_train_data.json
29
+ ds_type: json
30
+ format: custom
31
+ path: /workspace/input_data/f44a24a0bc5385f2_train_data.json
32
+ type:
33
+ field_input: arguments
34
+ field_instruction: instruction
35
+ field_output: output
36
+ format: '{instruction} {input}'
37
+ no_input_format: '{instruction}'
38
+ system_format: '{system}'
39
+ system_prompt: ''
40
+ debug: null
41
+ deepspeed: null
42
+ early_stopping_patience: null
43
+ eval_max_new_tokens: 128
44
+ eval_steps: null
45
+ eval_table_size: null
46
+ flash_attention: false
47
+ fp16: false
48
+ fsdp: null
49
+ fsdp_config: null
50
+ gradient_accumulation_steps: 4
51
+ gradient_checkpointing: true
52
+ group_by_length: true
53
+ hub_model_id: diaenra/0f3e25f3-9370-47c0-bb1f-167b56131fd8
54
+ hub_repo: null
55
+ hub_strategy: checkpoint
56
+ hub_token: null
57
+ learning_rate: 0.0001
58
+ load_in_4bit: false
59
+ load_in_8bit: false
60
+ local_rank: null
61
+ logging_steps: 1
62
+ lora_alpha: 64
63
+ lora_dropout: 0.05
64
+ lora_fan_in_fan_out: null
65
+ lora_model_dir: null
66
+ lora_modules_to_save:
67
+ - embed_tokens
68
+ - lm_head
69
+ lora_r: 32
70
+ lora_target_linear: true
71
+ lora_target_modules:
72
+ - gate_proj
73
+ - down_proj
74
+ - up_proj
75
+ - q_proj
76
+ - v_proj
77
+ - k_proj
78
+ - o_proj
79
+ lr_scheduler: cosine
80
+ max_memory:
81
+ 0: 70GB
82
+ micro_batch_size: 4
83
+ mlflow_experiment_name: /tmp/f44a24a0bc5385f2_train_data.json
84
+ model_type: AutoModelForCausalLM
85
+ num_epochs: 1
86
+ optim_args:
87
+ adam_beta1: 0.9
88
+ adam_beta2: 0.95
89
+ adam_epsilon: 1e-5
90
+ optimizer: adamw_torch
91
+ output_dir: miner_id_24
92
+ pad_to_sequence_len: true
93
+ resume_from_checkpoint: null
94
+ s2_attention: null
95
+ sample_packing: false
96
+ save_steps: 239
97
+ sequence_len: 512
98
+ strict: false
99
+ tf32: false
100
+ tokenizer_type: AutoTokenizer
101
+ train_on_inputs: false
102
+ trust_remote_code: true
103
+ val_set_size: 0.05
104
+ wandb_entity: diaenra-tao-miner
105
+ wandb_mode: online
106
+ wandb_name: 0f3e25f3-9370-47c0-bb1f-167b56131fd8
107
+ wandb_project: tao
108
+ wandb_run: diaenra
109
+ wandb_runid: 0f3e25f3-9370-47c0-bb1f-167b56131fd8
110
+ warmup_steps: 100
111
+ weight_decay: 0.1
112
+ xformers_attention: true
113
+
114
+ ```
115
+
116
+ </details><br>
117
+
118
+ # 0f3e25f3-9370-47c0-bb1f-167b56131fd8
119
+
120
+ This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Math-7B-Instruct) on the None dataset.
121
+ It achieves the following results on the evaluation set:
122
+ - Loss: 0.0853
123
+
124
+ ## Model description
125
+
126
+ More information needed
127
+
128
+ ## Intended uses & limitations
129
+
130
+ More information needed
131
+
132
+ ## Training and evaluation data
133
+
134
+ More information needed
135
+
136
+ ## Training procedure
137
+
138
+ ### Training hyperparameters
139
+
140
+ The following hyperparameters were used during training:
141
+ - learning_rate: 0.0001
142
+ - train_batch_size: 4
143
+ - eval_batch_size: 4
144
+ - seed: 42
145
+ - gradient_accumulation_steps: 4
146
+ - total_train_batch_size: 16
147
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
148
+ - lr_scheduler_type: cosine
149
+ - lr_scheduler_warmup_steps: 100
150
+ - num_epochs: 1
151
+
152
+ ### Training results
153
+
154
+ | Training Loss | Epoch | Step | Validation Loss |
155
+ |:-------------:|:------:|:----:|:---------------:|
156
+ | 0.1659 | 0.9996 | 614 | 0.0853 |
157
+
158
+
159
+ ### Framework versions
160
+
161
+ - PEFT 0.13.2
162
+ - Transformers 4.46.0
163
+ - Pytorch 2.5.0+cu124
164
+ - Datasets 3.0.1
165
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e25f2e30a066d975ada3230249d137fc8b52a4acc01e081823497f5985766fbf
3
+ size 2503093234