--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-Math-7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 0f3e25f3-9370-47c0-bb1f-167b56131fd8 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-Math-7B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f44a24a0bc5385f2_train_data.json ds_type: json format: custom path: /workspace/input_data/f44a24a0bc5385f2_train_data.json type: field_input: arguments field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: null eval_table_size: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: diaenra/0f3e25f3-9370-47c0-bb1f-167b56131fd8 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_modules_to_save: - embed_tokens - lm_head lora_r: 32 lora_target_linear: true lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj lr_scheduler: cosine max_memory: 0: 70GB micro_batch_size: 4 mlflow_experiment_name: /tmp/f44a24a0bc5385f2_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 239 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: diaenra-tao-miner wandb_mode: online wandb_name: 0f3e25f3-9370-47c0-bb1f-167b56131fd8 wandb_project: tao wandb_run: diaenra wandb_runid: 0f3e25f3-9370-47c0-bb1f-167b56131fd8 warmup_steps: 100 weight_decay: 0.1 xformers_attention: true ```

# 0f3e25f3-9370-47c0-bb1f-167b56131fd8 This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Math-7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0853 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.1659 | 0.9996 | 614 | 0.0853 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1