--- base_model: cardiffnlp/twitter-roberta-base-irony tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: twitter-roberta-base_3epoch results: [] --- # twitter-roberta-base_3epoch This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-irony](https://huggingface.co/cardiffnlp/twitter-roberta-base-irony) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9201 - Accuracy: 0.7723 - F1: 0.5183 - Precision: 0.6589 - Recall: 0.4271 - Precision Sarcastic: 0.6589 - Recall Sarcastic: 0.4271 - F1 Sarcastic: 0.5183 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Precision Sarcastic | Recall Sarcastic | F1 Sarcastic | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:-------------------:|:----------------:|:------------:| | No log | 1.0 | 174 | 0.6210 | 0.7248 | 0.1116 | 0.75 | 0.0603 | 0.75 | 0.0603 | 0.1116 | | No log | 2.0 | 348 | 0.5732 | 0.7767 | 0.5016 | 0.6964 | 0.3920 | 0.6964 | 0.3920 | 0.5016 | | 0.3415 | 3.0 | 522 | 0.9201 | 0.7723 | 0.5183 | 0.6589 | 0.4271 | 0.6589 | 0.4271 | 0.5183 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1