--- base_model: cardiffnlp/twitter-roberta-base-irony tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: twitter-roberta-base_3epoch10.16 results: [] --- # twitter-roberta-base_3epoch10.16 This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-irony](https://huggingface.co/cardiffnlp/twitter-roberta-base-irony) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.1539 - Accuracy: 0.7478 - F1: 0.4224 - Precision: 0.6154 - Recall: 0.3216 - Precision Sarcastic: 0.6154 - Recall Sarcastic: 0.3216 - F1 Sarcastic: 0.4224 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Precision Sarcastic | Recall Sarcastic | F1 Sarcastic | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:-------------------:|:----------------:|:------------:| | No log | 1.0 | 174 | 2.1148 | 0.7493 | 0.2869 | 0.7778 | 0.1759 | 0.7778 | 0.1759 | 0.2869 | | No log | 2.0 | 348 | 1.2416 | 0.7320 | 0.3882 | 0.5619 | 0.2965 | 0.5619 | 0.2965 | 0.3882 | | 0.0732 | 3.0 | 522 | 1.5725 | 0.7392 | 0.4873 | 0.5584 | 0.4322 | 0.5584 | 0.4322 | 0.4873 | | 0.0732 | 4.0 | 696 | 1.7604 | 0.7450 | 0.4520 | 0.5887 | 0.3668 | 0.5887 | 0.3668 | 0.4520 | | 0.0732 | 5.0 | 870 | 1.9529 | 0.7291 | 0.4749 | 0.5346 | 0.4271 | 0.5346 | 0.4271 | 0.4749 | | 0.0278 | 6.0 | 1044 | 1.7258 | 0.7334 | 0.4699 | 0.5467 | 0.4121 | 0.5467 | 0.4121 | 0.4699 | | 0.0278 | 7.0 | 1218 | 2.0437 | 0.7464 | 0.4568 | 0.592 | 0.3719 | 0.592 | 0.3719 | 0.4568 | | 0.0278 | 8.0 | 1392 | 2.0771 | 0.7507 | 0.4508 | 0.6121 | 0.3568 | 0.6121 | 0.3568 | 0.4508 | | 0.0081 | 9.0 | 1566 | 2.1414 | 0.7478 | 0.4186 | 0.6176 | 0.3166 | 0.6176 | 0.3166 | 0.4186 | | 0.0081 | 10.0 | 1740 | 2.1539 | 0.7478 | 0.4224 | 0.6154 | 0.3216 | 0.6154 | 0.3216 | 0.4224 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1