--- base_model: cardiffnlp/twitter-roberta-base-irony tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: twitter-roberta-base_3epoch10.8 results: [] --- # twitter-roberta-base_3epoch10.8 This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-irony](https://huggingface.co/cardiffnlp/twitter-roberta-base-irony) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3313 - Accuracy: 0.7579 - F1: 0.4324 - Precision: 0.6598 - Recall: 0.3216 - Precision Sarcastic: 0.6598 - Recall Sarcastic: 0.3216 - F1 Sarcastic: 0.4324 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Precision Sarcastic | Recall Sarcastic | F1 Sarcastic | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:-------------------:|:----------------:|:------------:| | No log | 1.0 | 347 | 2.2730 | 0.7464 | 0.4568 | 0.592 | 0.3719 | 0.592 | 0.3719 | 0.4568 | | 0.0571 | 2.0 | 694 | 1.9955 | 0.7594 | 0.3971 | 0.7051 | 0.2764 | 0.7051 | 0.2764 | 0.3971 | | 0.0756 | 3.0 | 1041 | 1.9672 | 0.7421 | 0.4526 | 0.5781 | 0.3719 | 0.5781 | 0.3719 | 0.4526 | | 0.0756 | 4.0 | 1388 | 2.0562 | 0.7493 | 0.4695 | 0.5969 | 0.3869 | 0.5969 | 0.3869 | 0.4695 | | 0.0421 | 5.0 | 1735 | 2.2045 | 0.7522 | 0.4416 | 0.6239 | 0.3417 | 0.6239 | 0.3417 | 0.4416 | | 0.0268 | 6.0 | 2082 | 2.2693 | 0.7594 | 0.4099 | 0.6905 | 0.2915 | 0.6905 | 0.2915 | 0.4099 | | 0.0268 | 7.0 | 2429 | 2.1746 | 0.7536 | 0.4466 | 0.6273 | 0.3467 | 0.6273 | 0.3467 | 0.4466 | | 0.0145 | 8.0 | 2776 | 2.3412 | 0.7550 | 0.4178 | 0.6559 | 0.3065 | 0.6559 | 0.3065 | 0.4178 | | 0.0051 | 9.0 | 3123 | 2.3512 | 0.7565 | 0.4232 | 0.6596 | 0.3116 | 0.6596 | 0.3116 | 0.4232 | | 0.0051 | 10.0 | 3470 | 2.3313 | 0.7579 | 0.4324 | 0.6598 | 0.3216 | 0.6598 | 0.3216 | 0.4324 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1