File size: 6,959 Bytes
6021f24 0308401 6021f24 9e7869d 6021f24 76fc559 6021f24 76fc559 6021f24 0308401 9e7869d 6021f24 76fc559 6021f24 76fc559 6021f24 9e7869d 76fc559 6021f24 0308401 6021f24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
---
license: mit
base_model: neuralmind/bert-base-portuguese-cased
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
model-index:
- name: finetuned-bert-categories-estimation
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned-bert-categories-estimation
This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4080
- F1: 0.9054
- Accuracy: 0.9277
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|
| 4.3517 | 0.13 | 100 | 3.6120 | 0.0934 | 0.3599 |
| 3.2593 | 0.25 | 200 | 2.7209 | 0.1848 | 0.5085 |
| 2.584 | 0.38 | 300 | 2.1874 | 0.2784 | 0.5952 |
| 2.1208 | 0.51 | 400 | 1.8393 | 0.3656 | 0.6504 |
| 1.7726 | 0.63 | 500 | 1.5560 | 0.4633 | 0.7121 |
| 1.5799 | 0.76 | 600 | 1.3686 | 0.5185 | 0.7442 |
| 1.3384 | 0.89 | 700 | 1.2079 | 0.5896 | 0.7759 |
| 1.2751 | 1.01 | 800 | 1.0736 | 0.6044 | 0.7941 |
| 1.0223 | 1.14 | 900 | 0.9892 | 0.6353 | 0.8089 |
| 0.9095 | 1.27 | 1000 | 0.9277 | 0.6699 | 0.8157 |
| 0.8496 | 1.39 | 1100 | 0.8370 | 0.6973 | 0.8311 |
| 0.7735 | 1.52 | 1200 | 0.7878 | 0.7093 | 0.8349 |
| 0.7058 | 1.65 | 1300 | 0.7299 | 0.7239 | 0.8481 |
| 0.6545 | 1.77 | 1400 | 0.6823 | 0.7444 | 0.8563 |
| 0.6652 | 1.9 | 1500 | 0.6623 | 0.7547 | 0.8609 |
| 0.5905 | 2.03 | 1600 | 0.6079 | 0.7660 | 0.8663 |
| 0.4679 | 2.15 | 1700 | 0.5910 | 0.7867 | 0.8696 |
| 0.4415 | 2.28 | 1800 | 0.5668 | 0.8034 | 0.8785 |
| 0.4377 | 2.41 | 1900 | 0.5580 | 0.8068 | 0.8796 |
| 0.4262 | 2.53 | 2000 | 0.5366 | 0.8054 | 0.8815 |
| 0.4272 | 2.66 | 2100 | 0.5094 | 0.8189 | 0.8880 |
| 0.3979 | 2.79 | 2200 | 0.4966 | 0.8229 | 0.8898 |
| 0.3763 | 2.92 | 2300 | 0.4838 | 0.8349 | 0.8950 |
| 0.366 | 3.04 | 2400 | 0.4742 | 0.8340 | 0.8950 |
| 0.2686 | 3.17 | 2500 | 0.4591 | 0.8365 | 0.8966 |
| 0.2735 | 3.3 | 2600 | 0.4676 | 0.8393 | 0.8958 |
| 0.2582 | 3.42 | 2700 | 0.4263 | 0.8580 | 0.9025 |
| 0.2451 | 3.55 | 2800 | 0.4383 | 0.8526 | 0.8988 |
| 0.2626 | 3.68 | 2900 | 0.4420 | 0.8554 | 0.9018 |
| 0.248 | 3.8 | 3000 | 0.4153 | 0.8658 | 0.9080 |
| 0.2634 | 3.93 | 3100 | 0.4082 | 0.8666 | 0.9088 |
| 0.2 | 4.06 | 3200 | 0.4162 | 0.8716 | 0.9090 |
| 0.1717 | 4.18 | 3300 | 0.4032 | 0.8748 | 0.9117 |
| 0.19 | 4.31 | 3400 | 0.4019 | 0.8747 | 0.9117 |
| 0.1507 | 4.44 | 3500 | 0.4118 | 0.8789 | 0.9139 |
| 0.16 | 4.56 | 3600 | 0.4107 | 0.8815 | 0.9139 |
| 0.1716 | 4.69 | 3700 | 0.4105 | 0.8826 | 0.9132 |
| 0.1545 | 4.82 | 3800 | 0.3945 | 0.8850 | 0.9180 |
| 0.1628 | 4.94 | 3900 | 0.3974 | 0.8907 | 0.9194 |
| 0.1123 | 5.07 | 4000 | 0.4060 | 0.8828 | 0.9166 |
| 0.0988 | 5.2 | 4100 | 0.4037 | 0.8847 | 0.9167 |
| 0.1065 | 5.32 | 4200 | 0.3959 | 0.8895 | 0.9201 |
| 0.1018 | 5.45 | 4300 | 0.4040 | 0.8875 | 0.9183 |
| 0.1091 | 5.58 | 4400 | 0.4044 | 0.8908 | 0.9199 |
| 0.1041 | 5.7 | 4500 | 0.3937 | 0.8943 | 0.9218 |
| 0.1154 | 5.83 | 4600 | 0.3981 | 0.8956 | 0.9205 |
| 0.0932 | 5.96 | 4700 | 0.3940 | 0.8967 | 0.9223 |
| 0.0835 | 6.08 | 4800 | 0.3914 | 0.8967 | 0.9224 |
| 0.065 | 6.21 | 4900 | 0.3905 | 0.8922 | 0.9215 |
| 0.0634 | 6.34 | 5000 | 0.3999 | 0.8924 | 0.9215 |
| 0.0618 | 6.46 | 5100 | 0.4013 | 0.8966 | 0.9226 |
| 0.0678 | 6.59 | 5200 | 0.3985 | 0.9004 | 0.9242 |
| 0.0666 | 6.72 | 5300 | 0.3892 | 0.8993 | 0.9239 |
| 0.0564 | 6.84 | 5400 | 0.4026 | 0.8986 | 0.9228 |
| 0.0704 | 6.97 | 5500 | 0.4011 | 0.9004 | 0.9236 |
| 0.0508 | 7.1 | 5600 | 0.4035 | 0.8987 | 0.9234 |
| 0.0395 | 7.22 | 5700 | 0.4131 | 0.8979 | 0.9216 |
| 0.0363 | 7.35 | 5800 | 0.4112 | 0.9022 | 0.9243 |
| 0.0443 | 7.48 | 5900 | 0.4079 | 0.9039 | 0.9251 |
| 0.0383 | 7.6 | 6000 | 0.4152 | 0.9031 | 0.9248 |
| 0.0384 | 7.73 | 6100 | 0.4075 | 0.9037 | 0.9258 |
| 0.0414 | 7.86 | 6200 | 0.4087 | 0.9035 | 0.9256 |
| 0.0449 | 7.98 | 6300 | 0.4066 | 0.9060 | 0.9262 |
| 0.0246 | 8.11 | 6400 | 0.4091 | 0.9041 | 0.9258 |
| 0.0275 | 8.24 | 6500 | 0.4085 | 0.9035 | 0.9262 |
| 0.0256 | 8.37 | 6600 | 0.4077 | 0.9048 | 0.9269 |
| 0.0307 | 8.49 | 6700 | 0.4040 | 0.9082 | 0.9285 |
| 0.0294 | 8.62 | 6800 | 0.4057 | 0.9067 | 0.9283 |
| 0.0226 | 8.75 | 6900 | 0.4069 | 0.9054 | 0.9274 |
| 0.0218 | 8.87 | 7000 | 0.4090 | 0.9053 | 0.9278 |
| 0.0333 | 9.0 | 7100 | 0.4053 | 0.9075 | 0.9286 |
| 0.0182 | 9.13 | 7200 | 0.4071 | 0.9063 | 0.9277 |
| 0.0176 | 9.25 | 7300 | 0.4058 | 0.9053 | 0.9278 |
| 0.0187 | 9.38 | 7400 | 0.4074 | 0.9060 | 0.9280 |
| 0.0185 | 9.51 | 7500 | 0.4069 | 0.9059 | 0.9278 |
| 0.0135 | 9.63 | 7600 | 0.4067 | 0.9049 | 0.9275 |
| 0.0118 | 9.76 | 7700 | 0.4076 | 0.9039 | 0.9267 |
| 0.0163 | 9.89 | 7800 | 0.4081 | 0.9050 | 0.9275 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
|