{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x791f7fdede10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x791f7fdedea0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x791f7fdedf30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x791f7fdedfc0>", "_build": "<function ActorCriticPolicy._build at 0x791f7fdee050>", "forward": "<function ActorCriticPolicy.forward at 0x791f7fdee0e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x791f7fdee170>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x791f7fdee200>", "_predict": "<function ActorCriticPolicy._predict at 0x791f7fdee290>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x791f7fdee320>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x791f7fdee3b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x791f7fdee440>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x791f7fd7b1c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1726774718086718117, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOkUr3hKyU+dQRGPB0SX74cchu8/qOBPQAAAAAAAAAA2qFbvg6k97wfgAo7QXqXOTzJVz4Bcjm6AACAPwAAgD9m/mG8XCcSutXiADcVi+oxnbUru6rbGrYAAIA/AACAP3AdUL5HvTI/tfYvPhD/uL6cl4K8OpThPQAAAAAAAAAAwJ+dvW4OnbwbWnM8lrqGPdWFWDtuHZk7AACAPwAAgD+APQs+bkQDPzLhH77mC5S+UcpuvQJrJD0AAAAAAAAAAJqvdbw6gx0+1inOvdkHhb6dTQ29+44gvAAAAAAAAAAApma4PUXLND/ln/u9oRetvsu+XDw59Jq9AAAAAAAAAACmlIu9PFM+PTv+ej0iQpe+4a8iPP7Efz0AAAAAAAAAAMb+XT7EdC0+oIFgvoMyo771k7m8YPNXPQAAAAAAAAAAejc6vkNAlT9e7f2+zIa1vo8Gpb6TtWK+AAAAAAAAAABNKJa9UnibuUrZWbqLlfa1KgMBO4YLgTkAAAAAAAAAADOvnbu5uLU/9ttxvpR6Oj7bslI7/fruOwAAAAAAAAAAGtUfvpYJUD9w0vo9Rqy5vnOZH73QsOk8AAAAAAAAAABm+qo7osugP82M1zzKNtG+2ey6u4PzcTwAAAAAAAAAADOsqTzDTXi6lQ2GNqtzPTJmDYQ7D2ectQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG04whfShJ2MAWyUTRUBjAF0lEdAkPdtahYeT3V9lChoBkdAbdxw71ZkkWgHTU0BaAhHQJD5aDe0ojR1fZQoaAZHQHAxIDgZTAFoB01bAWgIR0CQ+fnYQJ5WdX2UKGgGR0Byxda9sabXaAdL5GgIR0CQ+pD3M6ikdX2UKGgGR0BygjApKBd2aAdNgwFoCEdAkPqzuF6Av3V9lChoBkdAclsiEg4ffWgHTYIBaAhHQJD8y1y/9Hd1fZQoaAZHQHG110HQhOhoB03fAWgIR0CQ/W6l+EytdX2UKGgGR0BxjQoNNJvpaAdNIAFoCEdAkP13YUWVNnV9lChoBkdAcf35VfeDWmgHTTsBaAhHQJD9uR7qptJ1fZQoaAZHQHAV7c45tFdoB00BAWgIR0CQ/dCAtnPFdX2UKGgGR0BwxzrJKaodaAdNQAFoCEdAkP49qk/KQ3V9lChoBkdAcuy3z+WGAWgHTQ8BaAhHQJD+bnMdLg51fZQoaAZHQHJW1AJLM9toB00AAWgIR0CQ/seZXuE3dX2UKGgGR0BzWAjs2NvPaAdNOQFoCEdAkP75ZKWcBnV9lChoBkdAcQqmW+oLomgHTSwBaAhHQJD/Lag26091fZQoaAZHQHJJfKEFnqVoB00XAWgIR0CQ/ztBOYY0dX2UKGgGR0ByKOuhbnoxaAdNGwFoCEdAkRaYWHk92XV9lChoBkdAcDPBUaQ3gmgHTVsBaAhHQJEX0OVgQYl1fZQoaAZHQG2kGkFfReFoB01WAWgIR0CRGKLncL0BdX2UKGgGR0BxDZCv5gw5aAdNPAFoCEdAkRik+PikwnV9lChoBkdAbuX642CNCWgHTQcBaAhHQJEZO18b70p1fZQoaAZHQG/cBNmDlHVoB00CAWgIR0CRGifoicG1dX2UKGgGR0ByD620AtFsaAdL62gIR0CRGohVENONdX2UKGgGR0BrXsIcBEKFaAdNDwFoCEdAkRtPVAiV0XV9lChoBkdAbnYcWj4592gHTTgBaAhHQJEbmNEPUa11fZQoaAZHQHAstkvsZ51oB01IAmgIR0CRHj7dSEUTdX2UKGgGR0Bxi9kK/mDEaAdNlgFoCEdAkSFdcnmaIHV9lChoBkdAcDlBZZB9kWgHTR4BaAhHQJEh4hllK9R1fZQoaAZHQHAIh1LamGdoB03MAWgIR0CRIhN8E3bVdX2UKGgGR0BwkKJhvze5aAdN6QFoCEdAkSI0WqLjxXV9lChoBkdAcE9F6AvtdGgHTasBaAhHQJEiPlaKUFB1fZQoaAZHQGwpvyLAHmloB00EAWgIR0CRIk5gw482dX2UKGgGR0Bybq4kNWluaAdN9gFoCEdAkSLRrzoUz3V9lChoBkdAb1l1QqI8AGgHTT8BaAhHQJEjkxmCiAV1fZQoaAZHQHFPzy4FzMloB00DAmgIR0CRJH32mHgxdX2UKGgGR0ByN+EAYHgQaAdNjAFoCEdAkSZ9pyp71XV9lChoBkdAb9MaYu01ImgHTUYBaAhHQJEmhb3XZoR1fZQoaAZHQHMJJ2yLQ5ZoB0v2aAhHQJEqI6kqMFV1fZQoaAZHQG0Dgj6eoUBoB02nAWgIR0CRKnphWo3rdX2UKGgGR0Bv95o4+8oQaAdN5wFoCEdAkSvvVy3kP3V9lChoBkdAcNN57w8W9GgHTSIBaAhHQJEsbKNhmXh1fZQoaAZHQHHYB+z+m3xoB00KAmgIR0CRLOHYHxBmdX2UKGgGR0Bw3S4iHIp6aAdNPgFoCEdAkS2aguh9LHV9lChoBkdAcrjgzxgAqGgHTVsBaAhHQJEtwHnlnyx1fZQoaAZHQG0h9Kujh1loB00TAWgIR0CRLr8SwnpjdX2UKGgGR0Bx+KDCgsbvaAdNcwJoCEdAkS/GXTmW+3V9lChoBkdAcT07I1cdHWgHS/toCEdAkTANQbdadXV9lChoBkdAcHe6WPcSG2gHTY0BaAhHQJEwT5TIeYF1fZQoaAZHQG/jMfzSThZoB015AWgIR0CRME74BV+7dX2UKGgGR0BwW8+EAYHgaAdNAQJoCEdAkTCZvxYq5XV9lChoBkdAcjEuvllsg2gHTfoBaAhHQJE1jnhbW3B1fZQoaAZHQHEfoQBgeBBoB01OAWgIR0CRNpf16E8JdX2UKGgGR0Bxm0GX5WRzaAdNNwFoCEdAkTcB95QgtHV9lChoBkdAcORc/+sHSmgHTUgBaAhHQJFMzcxj8UF1fZQoaAZHQGxmAT7EYO5oB01qAWgIR0CRTbVtoBaLdX2UKGgGR0BvDzzwtrbhaAdNEwFoCEdAkU3sPnSv1XV9lChoBkdAcIS0SAYpD2gHTQ4CaAhHQJFOSSq2jO91fZQoaAZHQHEOqNQ0oBtoB02uAWgIR0CRTlSYPXkHdX2UKGgGR0Bxk2XQdCE6aAdNHQFoCEdAkU6jO1OTJXV9lChoBkdAcmxcRlHz6WgHTXIBaAhHQJFPR77bcoJ1fZQoaAZHQHGamcBltj1oB004AWgIR0CRT8e40/GEdX2UKGgGR0BtCbXQMQVcaAdN+wJoCEdAkVFnl8w6AHV9lChoBkdAcx0OXmeUZGgHTY8BaAhHQJFSoTGo73h1fZQoaAZHQHDYHMY/FBJoB00BAWgIR0CRU+TC+De1dX2UKGgGR0Bw0NCu2Zy/aAdNNAJoCEdAkVWdG/etS3V9lChoBkdAcYvy8zyjHmgHTQACaAhHQJFW92ki2Ul1fZQoaAZHQHB1feYUnG9oB00+AmgIR0CRVz0L+glGdX2UKGgGR0ByiEC9ytFKaAdNDwFoCEdAkVdGMfigkHV9lChoBkdAcVrsj3VTaWgHTZIBaAhHQJFYOj8DSw51fZQoaAZHQHDMTmOlwcZoB00nAWgIR0CRWXmz0HyFdX2UKGgGR0ByS59b5dnkaAdNkgFoCEdAkVmD9KmKqHV9lChoBkdAcBPlK9PDYWgHTSkBaAhHQJFaFNbkfcN1fZQoaAZHQHA+xZyMkyFoB01hAWgIR0CRWn6r/82rdX2UKGgGR0BxrJy/9Hc2aAdNnAFoCEdAkVv4c7yQP3V9lChoBkdAcuQD9wWFe2gHTTIBaAhHQJFcBNvfj0d1fZQoaAZHQG1IvysjmjloB0v5aAhHQJFcpESdvsJ1fZQoaAZHQHB2Nj9XLeRoB03HAWgIR0CRXdNke6qbdX2UKGgGR0BunPhCMPz4aAdN8AFoCEdAkV3z0pVjqnV9lChoBkdActZ/SpiqhmgHTXoBaAhHQJFflbmlqJx1fZQoaAZHQHBDflyR0U5oB00NAWgIR0CRYJ6o2n89dX2UKGgGR0BuNod6sySFaAdNOAFoCEdAkWCgUpNKy3V9lChoBkdAcQTH446wMmgHS/hoCEdAkWJiksSTQnV9lChoBkdAckDZid8Rc2gHTUgBaAhHQJFi2BDohZB1fZQoaAZHQG0enskY4yZoB00tAWgIR0CRZYVHWjGldX2UKGgGR0BwRGAZsKsuaAdNOQFoCEdAkWa8TrVvuXV9lChoBkdAbqgGu9vjwWgHTWIBaAhHQJFnZbHIZIh1fZQoaAZHQHGyi2x6fJ5oB00nAWgIR0CRaA9FF2FGdX2UKGgGR0Bwar0OEug6aAdNygFoCEdAkWq2/N7jUHV9lChoBkdAcuZr7fpD/mgHTWcBaAhHQJFsXZsbedl1fZQoaAZHQG7Ftj9XLeRoB00NAWgIR0CRbF4TK1XvdX2UKGgGR0Bw7Cpm29csaAdL/mgIR0CRbJyDZlFudX2UKGgGR0Bu5hGlQ/HHaAdNmQFoCEdAkW1b7oB7u3V9lChoBkdAcrG7+1jRUmgHTXYBaAhHQJFuLBwdbPh1fZQoaAZHQHHP3cgyM1loB02WAWgIR0CRbxWHk92YdX2UKGgGR0BwaB97WuoxaAdNaAJoCEdAkW+YXGff43V9lChoBkdAcMZ2cawUxmgHTTYBaAhHQJFwCwkgOjJ1fZQoaAZHQG0VAvL5h0BoB0v+aAhHQJFwJ3JPqLV1fZQoaAZHQHMy4C2c8T1oB00dAWgIR0CRccJbt7a7dX2UKGgGR0BxIGXVsk6caAdNDAFoCEdAkXITTa0x/XV9lChoBkdAbzGWDYh+v2gHTZgBaAhHQJFysI6bONZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |