Fix higher vRAM usage (#10)
Browse files- Fix higher vRAM usage (4fd1dcec923f377356f9e72bafd1ac60ca4e1c6a)
Co-authored-by: Tolga Cangöz <[email protected]>
README.md
CHANGED
@@ -45,8 +45,8 @@ controlnet = ControlNetModel.from_pretrained(
|
|
45 |
variant="fp16",
|
46 |
use_safetensors=True,
|
47 |
torch_dtype=torch.float16,
|
48 |
-
)
|
49 |
-
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
50 |
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
51 |
"stabilityai/stable-diffusion-xl-base-1.0",
|
52 |
controlnet=controlnet,
|
@@ -54,7 +54,7 @@ pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
|
54 |
variant="fp16",
|
55 |
use_safetensors=True,
|
56 |
torch_dtype=torch.float16,
|
57 |
-
)
|
58 |
pipe.enable_model_cpu_offload()
|
59 |
|
60 |
def get_depth_map(image):
|
@@ -92,7 +92,7 @@ images[0]
|
|
92 |
images[0].save(f"stormtrooper.png")
|
93 |
```
|
94 |
|
95 |
-
|
96 |
|
97 |
### Training
|
98 |
|
@@ -102,10 +102,10 @@ Our training script was built on top of the official training script that we pro
|
|
102 |
The model is trained on 3M image-text pairs from LAION-Aesthetics V2. The model is trained for 700 GPU hours on 80GB A100 GPUs.
|
103 |
|
104 |
#### Batch size
|
105 |
-
Data parallel with a single
|
106 |
|
107 |
#### Hyper Parameters
|
108 |
-
|
109 |
|
110 |
#### Mixed precision
|
111 |
fp16
|
|
|
45 |
variant="fp16",
|
46 |
use_safetensors=True,
|
47 |
torch_dtype=torch.float16,
|
48 |
+
)
|
49 |
+
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
50 |
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
51 |
"stabilityai/stable-diffusion-xl-base-1.0",
|
52 |
controlnet=controlnet,
|
|
|
54 |
variant="fp16",
|
55 |
use_safetensors=True,
|
56 |
torch_dtype=torch.float16,
|
57 |
+
)
|
58 |
pipe.enable_model_cpu_offload()
|
59 |
|
60 |
def get_depth_map(image):
|
|
|
92 |
images[0].save(f"stormtrooper.png")
|
93 |
```
|
94 |
|
95 |
+
For more details, check out the official documentation of [`StableDiffusionXLControlNetPipeline`](https://huggingface.co/docs/diffusers/main/en/api/pipelines/controlnet_sdxl).
|
96 |
|
97 |
### Training
|
98 |
|
|
|
102 |
The model is trained on 3M image-text pairs from LAION-Aesthetics V2. The model is trained for 700 GPU hours on 80GB A100 GPUs.
|
103 |
|
104 |
#### Batch size
|
105 |
+
Data parallel with a single GPU batch size of 8 for a total batch size of 256.
|
106 |
|
107 |
#### Hyper Parameters
|
108 |
+
The constant learning rate of 1e-5.
|
109 |
|
110 |
#### Mixed precision
|
111 |
fp16
|