Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
---
|
3 |
+
license: openrail++
|
4 |
+
base_model: stabilityai/stable-diffusion-xl-base-1.0
|
5 |
+
tags:
|
6 |
+
- stable-diffusion
|
7 |
+
- stable-diffusion-diffusers
|
8 |
+
- text-to-image
|
9 |
+
- diffusers
|
10 |
+
- controlnet
|
11 |
+
inference: false
|
12 |
+
---
|
13 |
+
|
14 |
+
# SDXL-controlnet: Depth
|
15 |
+
|
16 |
+
These are controlnet weights trained on stabilityai/stable-diffusion-xl-base-1.0 with depth conditioning. You can find some example images in the following.
|
17 |
+
|
18 |
+
## Usage
|
19 |
+
|
20 |
+
Make sure to first install the libraries:
|
21 |
+
|
22 |
+
```bash
|
23 |
+
pip install accelerate transformers safetensors opencv-python diffusers
|
24 |
+
```
|
25 |
+
|
26 |
+
And then we're ready to go:
|
27 |
+
|
28 |
+
```python
|
29 |
+
import torch
|
30 |
+
import numpy as np
|
31 |
+
from PIL import Image
|
32 |
+
|
33 |
+
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
|
34 |
+
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
|
35 |
+
from diffusers.utils import load_image
|
36 |
+
|
37 |
+
|
38 |
+
depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to("cuda")
|
39 |
+
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-hybrid-midas")
|
40 |
+
controlnet = ControlNetModel.from_pretrained(
|
41 |
+
"diffusers/controlnet-depth-sdxl-1.0",
|
42 |
+
variant="fp16",
|
43 |
+
use_safetensors=True,
|
44 |
+
torch_dtype=torch.float16,
|
45 |
+
).to("cuda")
|
46 |
+
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16).to("cuda")
|
47 |
+
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
48 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
49 |
+
controlnet=controlnet,
|
50 |
+
vae=vae,
|
51 |
+
variant="fp16",
|
52 |
+
use_safetensors=True,
|
53 |
+
torch_dtype=torch.float16,
|
54 |
+
).to("cuda")
|
55 |
+
pipe.enable_model_cpu_offload()
|
56 |
+
|
57 |
+
def get_depth_map(image):
|
58 |
+
image = feature_extractor(images=image, return_tensors="pt").pixel_values.to("cuda")
|
59 |
+
with torch.no_grad(), torch.autocast("cuda"):
|
60 |
+
depth_map = depth_estimator(image).predicted_depth
|
61 |
+
|
62 |
+
depth_map = torch.nn.functional.interpolate(
|
63 |
+
depth_map.unsqueeze(1),
|
64 |
+
size=(1024, 1024),
|
65 |
+
mode="bicubic",
|
66 |
+
align_corners=False,
|
67 |
+
)
|
68 |
+
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
|
69 |
+
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
|
70 |
+
depth_map = (depth_map - depth_min) / (depth_max - depth_min)
|
71 |
+
image = torch.cat([depth_map] * 3, dim=1)
|
72 |
+
|
73 |
+
image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
|
74 |
+
image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
|
75 |
+
return image
|
76 |
+
|
77 |
+
|
78 |
+
prompt = "stormtrooper lecture, photorealistic"
|
79 |
+
image = load_image("https://huggingface.co/lllyasviel/sd-controlnet-depth/resolve/main/images/stormtrooper.png")
|
80 |
+
controlnet_conditioning_scale = 0.5 # recommended for good generalization
|
81 |
+
|
82 |
+
depth_image = get_depth_map(image)
|
83 |
+
|
84 |
+
images = pipe(
|
85 |
+
prompt, image=depth_image, num_inference_steps=30, controlnet_conditioning_scale=controlnet_conditioning_scale,
|
86 |
+
).images
|
87 |
+
images[0]
|
88 |
+
|
89 |
+
images[0].save(f"stormtrooper.png")
|
90 |
+
```
|
91 |
+
|
92 |
+
To more details, check out the official documentation of [`StableDiffusionXLControlNetPipeline`](https://huggingface.co/docs/diffusers/main/en/api/pipelines/controlnet_sdxl).
|
93 |
+
|
94 |
+
### Training
|
95 |
+
|
96 |
+
Our training script was built on top of the official training script that we provide [here](https://github.com/huggingface/diffusers/blob/main/examples/controlnet/README_sdxl.md).
|
97 |
+
|
98 |
+
#### Training data and Compute
|
99 |
+
The model is trained on 3M image-text pairs from LAION-Aesthetics V2. The model is trained for 700 GPU hours on 80GB A100 GPUs.
|
100 |
+
|
101 |
+
#### Batch size
|
102 |
+
Data parallel with a single gpu batch size of 8 for a total batch size of 256.
|
103 |
+
|
104 |
+
#### Hyper Parameters
|
105 |
+
Constant learning rate of 1e-5.
|
106 |
+
|
107 |
+
#### Mixed precision
|
108 |
+
fp16
|