valhalla commited on
Commit
59b1c3f
1 Parent(s): d409e43

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +108 -0
README.md ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ license: openrail++
4
+ base_model: stabilityai/stable-diffusion-xl-base-1.0
5
+ tags:
6
+ - stable-diffusion
7
+ - stable-diffusion-diffusers
8
+ - text-to-image
9
+ - diffusers
10
+ - controlnet
11
+ inference: false
12
+ ---
13
+
14
+ # SDXL-controlnet: Depth
15
+
16
+ These are controlnet weights trained on stabilityai/stable-diffusion-xl-base-1.0 with depth conditioning. You can find some example images in the following.
17
+
18
+ ## Usage
19
+
20
+ Make sure to first install the libraries:
21
+
22
+ ```bash
23
+ pip install accelerate transformers safetensors opencv-python diffusers
24
+ ```
25
+
26
+ And then we're ready to go:
27
+
28
+ ```python
29
+ import torch
30
+ import numpy as np
31
+ from PIL import Image
32
+
33
+ from transformers import DPTFeatureExtractor, DPTForDepthEstimation
34
+ from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
35
+ from diffusers.utils import load_image
36
+
37
+
38
+ depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to("cuda")
39
+ feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-hybrid-midas")
40
+ controlnet = ControlNetModel.from_pretrained(
41
+ "diffusers/controlnet-depth-sdxl-1.0",
42
+ variant="fp16",
43
+ use_safetensors=True,
44
+ torch_dtype=torch.float16,
45
+ ).to("cuda")
46
+ vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16).to("cuda")
47
+ pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
48
+ "stabilityai/stable-diffusion-xl-base-1.0",
49
+ controlnet=controlnet,
50
+ vae=vae,
51
+ variant="fp16",
52
+ use_safetensors=True,
53
+ torch_dtype=torch.float16,
54
+ ).to("cuda")
55
+ pipe.enable_model_cpu_offload()
56
+
57
+ def get_depth_map(image):
58
+ image = feature_extractor(images=image, return_tensors="pt").pixel_values.to("cuda")
59
+ with torch.no_grad(), torch.autocast("cuda"):
60
+ depth_map = depth_estimator(image).predicted_depth
61
+
62
+ depth_map = torch.nn.functional.interpolate(
63
+ depth_map.unsqueeze(1),
64
+ size=(1024, 1024),
65
+ mode="bicubic",
66
+ align_corners=False,
67
+ )
68
+ depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
69
+ depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
70
+ depth_map = (depth_map - depth_min) / (depth_max - depth_min)
71
+ image = torch.cat([depth_map] * 3, dim=1)
72
+
73
+ image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
74
+ image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
75
+ return image
76
+
77
+
78
+ prompt = "stormtrooper lecture, photorealistic"
79
+ image = load_image("https://huggingface.co/lllyasviel/sd-controlnet-depth/resolve/main/images/stormtrooper.png")
80
+ controlnet_conditioning_scale = 0.5 # recommended for good generalization
81
+
82
+ depth_image = get_depth_map(image)
83
+
84
+ images = pipe(
85
+ prompt, image=depth_image, num_inference_steps=30, controlnet_conditioning_scale=controlnet_conditioning_scale,
86
+ ).images
87
+ images[0]
88
+
89
+ images[0].save(f"stormtrooper.png")
90
+ ```
91
+
92
+ To more details, check out the official documentation of [`StableDiffusionXLControlNetPipeline`](https://huggingface.co/docs/diffusers/main/en/api/pipelines/controlnet_sdxl).
93
+
94
+ ### Training
95
+
96
+ Our training script was built on top of the official training script that we provide [here](https://github.com/huggingface/diffusers/blob/main/examples/controlnet/README_sdxl.md).
97
+
98
+ #### Training data and Compute
99
+ The model is trained on 3M image-text pairs from LAION-Aesthetics V2. The model is trained for 700 GPU hours on 80GB A100 GPUs.
100
+
101
+ #### Batch size
102
+ Data parallel with a single gpu batch size of 8 for a total batch size of 256.
103
+
104
+ #### Hyper Parameters
105
+ Constant learning rate of 1e-5.
106
+
107
+ #### Mixed precision
108
+ fp16